Stahllexikon

Inhaltsverzeichnis

TOOLOX 33 / TOOLOX 44		Daido DCMX	33
HARDOX 450 / HARDOX 600	2	Daido DRM1	39
TOOLOX 33	3	Daido DRM3	43
TOOLOX 44	4	Daido NAK80	47
TOOLOX 33 / TOOLOX 44	7	1.2343 X 37 CrMoV 5-1	50
HARDOX 450	11	1.2343ESU X 37 CrMoV 5-1 ESU	50
HARDOX 600	12	1.2767 45 NiCrMo 16	51
HARDOX 450 / HARDOX 600	13	1.2311 40 CrMnMo 7	53
1.1730 C 45 U	18	1.2312 40 CrMnMoS 8-7	53
1.7131 16 McCr 5	18	MINKOR	54
1.2842 90 MnCrV 8	19	1.4112 X 90 CrMoV 18	55
1.2363 X 100 CrMoV 5	21	1.3343 HS 6-5-2 C	56
1.2436 X 210 CrW 12	22	Härtevergleichstabellen	58
1.2379 X 153 CrMoV 12	24	Gewichtstabellen	59
TENASTEEL	26	Allgemeine Geschäftsbedingungen	60
		Impressum	62

SSAB

Ultraschallprüfung

Jedes Blech wird aufwendig geprüft, Zeugnisse 3.1 sind verfügbar, die internen Standards sind vielerorts strenger als der Industriestandard.

Oberflächenprüfung¹⁾

Gemäß EN 10 160	Abstand zwischen parallelen Prüflinien [mm]	Zu beachtende minimale Fehlerfläche [mm²]	Maximal zulässige Fehlerfläche [mm²]	Maximale Anzahl lokaler Fehler [Anzahl/m²]	Entsprechende Stahl-Eisen- Lieferbedingungen
-	100	1000	10000	1	SEL 072 Klasse 5
S ₀	100	1000	5000	20	-
S ₁	100	100	1000	15	SEL 072 Klasse 3
S ₂	50	50	100	10	SEL 072 Klasse 2
S ₃	50	20	50	10	SEL 072 Klasse 1

Randzonenprüfung²⁾

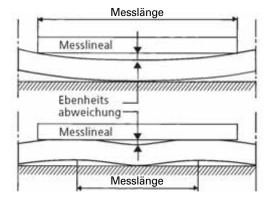
Gemäß EN 10 160	Randzonen- breite ²⁾ [mm]	Zu beachtende minimale Fehlerlänge [mm]	Maximal zulässige Fehlerlänge [mm]	Maximal zulässige Fehlerfläche [mm²]	Maximale Anzahl Fehler pro m Länge	 Entsprechende Stahl-Eisen- Lieferbedingungen
E ₀	50 – 100	50	100	2000	6	-
E ₁	50 – 100	25	50	1000	5	SEL 072 Klasse 3
E ₂	50 – 100	20	40	500	4	SEL 072 Klasse 2
E ₃	50 – 100	15	30	100	3	SEL 072 Klasse 1
E ₄	50 – 100	10	20	50	2	-

- 1) Die Prüfung kann bestellt und durchgeführt werden als Gesamtprüfung, beispielsweise E₁S₁ oder E₂S₂, oder als Nur-Randzonen oder Nur-Oberflächenprüfung, beispielsweise E₁ oder S₁.
- 2) Die Breite der Randzone bei der Randzonenprüfung variiert in Abhängigkeit von der Dicke des Blechs.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Die Dickentoleranzen der Bleche gemäß AccuRollTech™ sind enger als DIN EN 10 029.

Nenndicke [mm]	Hardox Toleranzklasse A [mm]		Toleranz	olox zklasse C nm]	Maximaler Dickenunterschied		
	min	max	min	max	im Blech [mm]		
- 4,9	-0,3	+0,4	-0,0	+0,7	0,5		
5,0 - 7,9	-0,3	+0,5	-0,0	+0,8	0,6		
8,0 - 14,9	-0,4	+0,6	-0,0	+1,0	0,7		
15,0 - 24,9	-0,5	+0,7	-0,0	+1,2	0,8		
25,0 - 39,9	-0,7	+0,8	-0,0	+ 1,5	1,0		
40,0 - 79,9	-0,9	+ 1,5	-0,0	+2,4	1,1		
80,0 -	- 1,0	+2,2	-0,0	+3,2	1,2		



Bleche aus Hardox® und Toolox® haben standardmäßig einen Rostschutzanstrich sowie eine Einzelblech-Kennzeichnung.

Toolox® und Hardox®-Bleche haben eine erstaunliche Ebenheit.

		5,0-7,9	8,0-14,9	15,0-24,9	25,0-99,9	100,0-155,0
Toolox® 33	Quartoblech Klasse S Messlänge 1.000 mm	4mm	3mm	3mm	3mm	4mm
Toolox® 44	Quartoblech Klasse S Messlänge 2.000 mm	8mm	6mm	6mm	6mm	8mm

		3,2-3,9	4,0-4,9	5,0-5,9	6,0-19,9	20,0-130,0
Hardox [®] 450	Quartoblech Klasse C Messlänge 1.000 mm	15 mm	7 mm	5mm	4mm	3mm

		6,0-7,9	8,0-24,9	25,0-39,9	40,0-65,0
Hardox [®] 600	Quartoblech Klasse E Messlänge 1.000 mm	11 mm	10 mm	9mm	8mm

Werkstoffblatt

Toolox® 33 ist ein gehärteter und angelassener Werkzeugstahl, der auf geringste Restspannungen ausgelegt ist. Dieser Werkstoff hat deshalb eine sehr gute Formstabilität bei der Bearbeitung. Toolox® 33 kombiniert sehr gute Bearbeitungseigenschaften mit einer Härte von 300 HBW. Der Werkzeugstahl ist speziell vorgesehen für Kunststoffformen und ist hervorragend polier- und narbungsgeeignet. Andere Einsatzbereiche: Gummiformen, Biegewerkzeuge, Verschleißteile und Konstruktionsteile im Maschinenbau.

Toolox® 33 ersetzt die Werkstoffe 1.2311 / 1.2312 / 1.2738 / 1.7225.

HBW 275-325 (entspricht ca. 26-32,5 HRC) Härte (Garantierter Wert) Kerbschlagarbeit Kerbschlagarbeit Prüftemperatur

20°C Charpy-V in Querrichtung ≤ 130 mm mind. 35 J (Garantierter Wert)

Zugfestigkeit

(Umgerechneter Wert)

Zugfestigkeit ca. 860-1010 MPa

Ultraschallprüfung (Garantierter Wert)

Nach EN 10 160 (Bleche) oder EN 10 228-3 (Schmiedeteile) und zusätzlichen Anforderungen gemäß SSAB V6.

Ätzeneigenschaften

Toolox® 33 erfüllt die Anforderungen gemäß NADCA 207-2006.

(Garantieverpflichtung)

Toolox® 33 wird in Blechdicken 6-130mm geliefert.

Abmessungen Lieferzustand

Gehärtet und angelassen bei mind. 590°C.

Wärmebehandlung

Nitrieren oder Beschichten ist bei Temperaturen unter 590°C möglich.

Toolox® 33 ist für weitere Wärmebehandlung nicht vorgesehen. Wenn dieser Werkstoff nach der Lieferung weiterer Wärmebehandlung über 590°C unterzogen wird, sind die Eigenschaften nicht mehr garantiert.

Prüfung

Prüfung gemäß EN 10 025 und EN ISO 6506-1. Härtegeprüft an abgefräster Oberfläche 0,5 – 2 mm unter

der Blechoberfläche.

Toleranzen

Blech: Gemäß EN 10 029 und SSAB AccuRollTech™.

Rundstahl: EN 10 060

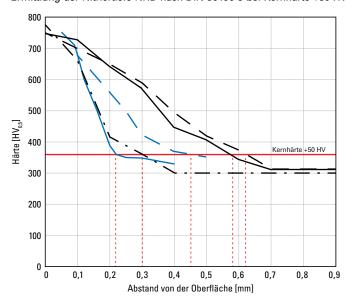
Schweißen

Hinweise auf Seite 73 beachten.

Produkte

Präzisionsflachstahl (Standard- und Sonderabmessungen), EcoPlan®, P-Platten, VarioPlan® und Rohmaterialzuschnitte. Maschinenbauteile und Führungsleisten individuell nach Ihren Angaben und Zeichnungen.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de



TOOLOX® 33

Metallurgische Information

Härteverlauf

Ermittlung der Nitriertiefe NHD nach DIN 50190-3 bei Kernhärte +50 HV

Gasnitrieren im Ammoniakgasstrom, 36h, 510°C: NHD=0,58mm

- Gasnitrieren im Ammoniakgasstrom, 84h, 510°C: NHD=0,62mm

Gas-Nitro-Carburieren, 5h, 580°C: NHD=0,30mm Plasmanitrieren, Kurzzeit: NHD=0,22mm, VS=7µm

Plasmanitrieren, Langzeit: NHD=0,45mm, VS=7μm

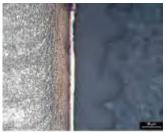
Richtanalyse/Chemische Zusammensetzung [%]

	С	Si	Mn	P	S	Cr	Мо	V	Ni
max.	0,24	1,1	0,8	0,01	0,003	1,2	0,3	0,11	1,0
min.	0,22	0,6		, The state of the		1,0	·	0,10	

Einschlussgehalt (Typenwerte)

Einschlussquote (äquival. Durchmesser) 6µm Flächenanteil 0,015% Länge-Breite-Verhältnis 1.2

Physikalische Eigenschaften (Typenwerte)


Wärmeausdehnungskoeffizient [10-6/K]

bei +20-200°C:

Wärmeleitkoeffizient:

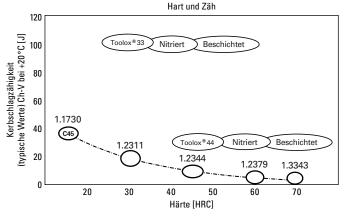
+20°C	35,0 W/mK
+200°C	35,0 W/mK
+400°C	30,0 W/mK

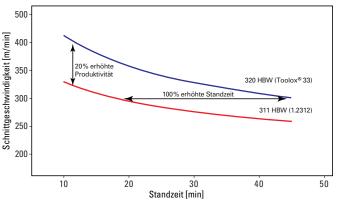
Kurzzeit

Diffusionszone, keine Verbindungsschicht

Langzeit

Diffusionszone, Verbindungsschicht 36 µm





Oberflächentechnik

Werkzeugstandzeit beim Planfräsen

Mechanische Eigenschaften (typische Werte*)

	garantierte Härte [HBW]	garantierte Kerbschlag- arbeit Min [J]	Kerbschlag- arbeit typ. [J]*	Dehngrenze typ. R _{p0.2} [MPa]*	Zugfestigkeit typ. R _m [MPa]*	Bruch- dehnung typ. A _s [%]*	Stauch- grenze typ. MPa*	Dicke [mm]
-40°C	[[1577]	Willi [0]	27	11p0,2 [ivii a]	IIM [IVII d]	AS [70]	IVII U	[
-20°C			45					
-20 C			45					
+20°C	275-325	35	100	850	980	16	800	
+200°C			170	800	900	12	750	6-130
+300°C			180				700	
+400°C			180				590	
+500°C							560	

Toolox® wird bei Raumtemperatur auf Härte und Kerbschlagarbeit geprüft.

Alle anderen angegeben Werte stammen aus ergänzenden Prüfungen und dienen nur zur Information, sind jedoch nicht garantiert.

* Richtwerte nur zur Information.

Telefon: +49 (0) 3 68 44/480-0 • Telefax: +49 (0) 3 68 44/480-55 • grp@stahlnetz.de

TOOLOX® 44

Werkstoffblatt

Toolox® 44 ist ein gehärteter und angelassener Werkzeugstahl, der auf geringste Restspannungen ausgelegt ist. Dieser Werkstoff hat deshalb eine sehr gute Formstabilität bei der Bearbeitung. Toolox® 44 besitzt trotz einer Härte von 45 HRC gute Bearbeitungseigenschaften. Der Werkzeugstahl ist speziell vorgesehen für Kunststoffformen und ist hervorragend polier- und narbungsgeeignet. Andere Einsatzbereiche: Blechumformwerkzeuge, Verschleißteile, Konstruktionsteile sowie Maschinenspindeln.

Härte (Garantierter Wert) HBW 410-475 (entspricht ca. 41-47 HRC)

Kerbschlagarbeit Prüftemperatur Kerbschlagarbeit,

20°C Charpy-V in Querrichtung ≤ 130mm mind. 18 J (Garantierter Wert)

Zugfestigkeit

(Umgerechneter Wert)

roolox 44

Zugfestigkeit ca. 1450 MPa

Ultraschallprüfung (Garantierter Wert)

Nach EN 10 160 (Bleche) oder EN 10 228-3 (Schmiedeteile) und zusätzlichen Anforderungen gemäß SSAB V6.

Ätzeneigenschaften (Garantieverpflichtung)

Toolox® 44 erfüllt die Anforderungen gemäß NADCA 207-2006.

Abmessungen

Toolox® 44 wird in Blechdicken 6-130 mm geliefert.

Wärmebehandlung

Lieferzustand

Gehärtet und angelassen bei mind. 590°C.

Nitrieren oder Beschichten ist bei Temperaturen unter 590°C möglich.

Toolox® 44 ist für weitere Wärmebehandlung nicht vorgesehen. Wenn dieser Werkstoff weiterer Wärmebehandlung

über 590°C unterzogen wird, sind die Eigenschaften nicht mehr garantiert.

Prüfung gemäß EN 10 025 und EN ISO 6506-1. Härtegeprüft an abgefräster Oberfläche 0,5 – 2mm unter Prüfuna

der Blechoberfläche.

Toleranzen Blech: Gemäß Werknorm SSAB für Werkzeugstähle, Schmiedestücke: Gemäß DIN 75 27

Rundstahl: EN 10 060

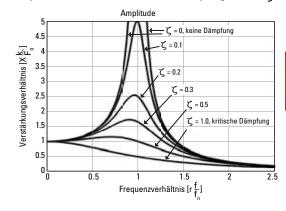
Schweißen Hinweise auf Seite 73 beachten.

Produkte $Pr\"{a}z is ions flach stahl (Standard-und Sonder abmessungen), EcoPlan^{o}, VarioPlan^{o}, VarioRond^{o} und Rohmaterial zuschnitte.$

Maschinenbauteile und Führungsleisten individuell nach Ihren Angaben und Zeichnungen.

oolox 44

Dämpfungseigenschaften


Toolox® 44 wurde in Schweden schon früh erfolgreich für Grundkörper hochwertiger Zerspanungswerkzeuge wie WP-Bohrer, Fräser und Abstechwerkzeuge eingesetzt. Dabei zeigten sich ruhiger Lauf und lange Standzeiten, gerade auch im direkten Vergleich zu bisher üblichen Werkstoffen. Mehrere wissenschaftliche Untersuchungen, unter anderem an der Königlichen Technischen Hochschule in Stockholm sowie durch Dr. Svenningsson führen dies auf hervorragende Dämpfungseigenschaften des Werkstoffes zurück. So ist die kritische Schnitttiefe von Toolox®-Fräsern größer als bei herkömmlichen Werkzeugen, schlankere, weiter auskragende Werkzeuge werden möglich.

Diese Eigenschaften empfehlen Toolox® 44-Rundmaterial auch für Wellen und Spindeln und andere Maschinenelemente, bei denen Fremdanregung den Prozess beeinflusst und Schwingungen reduziert werden sollen.

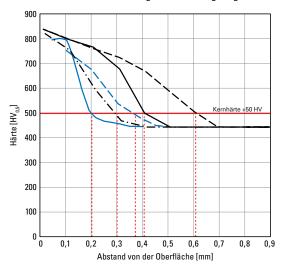
Schneller abklingende Amplituden in Folge der höheren Dämpfung verbessern zudem entscheidend die Dauerfestigkeit des Bauteiles, Materialermüdung wird reduziert.

Über einen weiten Frequenzbereich von 65 Hz bis 4.000 Hz ist die Dämpfung sehr gut, sie steigt mit der Anregungsfrequenz. So beträgt der Dämpfungsfaktor zwischen 1,2% bei 120Hz und 2,2% bei 4.000Hz und liegt damit erheblich über dem anderer Stähle, er erreicht in der Spitze das Niveau von Grauguss. Die Untersuchungen sind derzeit noch nicht abgeschlossen, erklären und bestätigen die bisher beobachteten Vorteile im Betrieb aber recht aut. Sprechen Sie uns an, wir unterstützen Sie gerne bei der Optimierung Ihrer Bauteile.

Amplituden bei unterschiedlichen rel. Dämpfungswerten ζ

Werkstoff	Rel. Dämpfung ζ %
GG [Grauguss]	≈ 2,1 – 2,3
Toolox 44	1,9
Toolox 33	1,0
S355 [St52]	0,8
Hochfeste Stähle (vergütet)	≈0,1 – 0,3

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de



TOOLOX® 44

Metallurgische Information

Härteverlauf

Ermittlung der Nitriertiefe NHD nach DIN 50190-3 bei Kernhärte +50 HV Hinweis: Durch die hohe Kernhärte von ca. 450 HV unterschätzt man leicht die wirksame Nitriertiefe im Vergleich zu niedrig vergüteten Werkstoffen.

- Gasnitrieren im Ammoniakgasstrom, 36h, 510°C; NHD=0.40mm
- --- Gasnitrieren im Ammoniakgasstrom, 84h, 510°C: NHD=0,60mm
- • Gas-Nitro-Carburieren, 5h, 580°C: NHD=0,30mm
- Plasmanitrieren, Kurzzeit: NHD=0,23mm, VS=7 µm
- Plasmanitrieren, Langzeit: NHD=0,38mm, VS=7µm

Richtanalyse/Chemische Zusammensetzung [%]

	С	Si	Mn	P	S	Cr	Мо	V	Ni
max.	0,32	1,1	0,8	0,01	0,003	1,35	0,8	0,14	1,0
min.		0,6							

Einschlussgehalt (Typenwerte)

Einschlussquote (äquival. Durchmesser)	6µm
Flächenanteil	0,015%
Länge-Breite-Verhältnis	1,2

Physikalische Eigenschaften (Typenwerte)

Wärmeausdehnungskoeffizient [10-6/K]

bei +20-200°C: 13.5

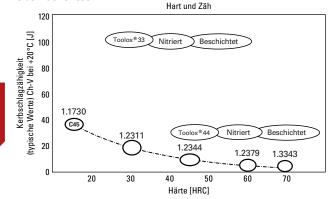
Wärmeleitkoeffizient:

0		
	+20 °C	34,0 W/mK
	+200 °C	32,0 W/mK
	+400°C	31,0 W/mK
	¹euu ∘C	21.0 M/mK

Kurzzeit

Diffusionszone, keine Verbindungsschicht

Langzeit


Diffusionszone, Verbindungsschicht 34 µm

Oberflächentechnik

Mechanische Eigenschaften (typische Werte*)

	garantierte Härte	Härte typ.	garantierte Kerbschlag- arbeit	Kerbschlag- arbeit typ.	Dehngrenze typ.	Zugfestigkeit typ.	Bruch- dehnung typ.	Stauchgrenze typ.	Stauchgrenze nach 170 Std. Haltezeit typ.	Dicke
	[HBW]	[HRC]*	Min [J]	[J]*	R _{p0,2} [MPa]*	R _m [MPa]*	A _s [%]*	MPa*	MPa*	[mm]
-40°C				14						
-20°C				19						
+20°C	410-475	45	18	30	1300	1450	13	1250		
+200°C				60	1200	1380	10	1120		6-130
+300°C				80				1120		
+400°C				80				1060	1060	
+500°C								930	910	

Toolox® wird bei Raumtemperatur auf Härte und Kerbschlagarbeit geprüft.

Alle anderen angegeben Werte stammen aus ergänzenden Prüfungen und dienen nur zur Information, sind jedoch nicht garantiert.

* Richtwerte nur zur Information.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TOOLOX® 44

Härtevergleichstabelle für Toolox®und Hardox®

Zugfestigkeit MPa	715	790	820	861	935	995	1011	1090	1169	1245	1328	1412	1494	1580	1758	1940	2130
Vickershärte HV	205	233	243	261	289	311	317	345	373	401	429	458	485	514	569	627	682
Brinellhärte HBW	225	250	260	275	300	320	325	350	375	400	425	450	475	500	550	600	650
Rockwell HRC	19	22,5	24	26	29	32	32,5	35,5	38	40	42,5	44,5	46,5	49	52,5	55	57,5

Bearbeitung von Toolox®

Alle bedeutenden Werkzeughersteller sind heute auf die Bearbeitung von Toolox® vorbereitet. Es empfiehlt sich, sich über geeignete Werkzeuge und Schnittwerte beraten zu lassen. Diese Empfehlungen sollten lehrbuchmäßig eingehalten werden, um ein optimales Ergebnis und produktive Leistung zu erzielen. Es ist unbedingt zu vermeiden, aus falsch verstandener Vorsicht den Vorschub zu reduzieren. Gute Spanbildung führt zum Erfolg, Toolox® dankt es Ihnen mit langer Werkzeugstandzeit und schnellerer Bearbeitung.

Bohren

Das Bohren mit HSS-Werkzeugen ist weniger stabilen Maschinen sowie geringen Stückzahlen vorbehalten. Bewährt haben sich HSS-Co-Werkzeuge mit den unten angegebenen Schnittwerten. Achten Sie auf kontinuierlichen maschinellen Vorschub und scharfe Werkzeuge. Eine ausgespitzte Querschneide wäre vorteilhaft um optimale Spanbildung zu gewährleisten.

	Toolox® 33	Toolox® 44		
Schnittgeschwindigkeit: v [m/min]	~ 15	~ 7		
Durchmesser [mm]	Vorschub: f [mm/U] / Drehzahl [1/min]		
5	0,10/950	0,05/445		
10	0,10/475	0,09/220		
15	0,16/325	0,15/150		
20	0,23/235	0,20/110		
25	0,30/195	0,25/90		
30	0,35/165	0,30/75		
* 35	0,40/136	0,35/63		
* 40	0,45/119	0,40/55		

Bohren mit VHM-Werkzeugen ist produktiv und effizient. Dabei ist eine innere Kühlmittelzufuhr mit fetterer Konzentration zu empfehlen. Achten Sie darauf, mit kontinuierlichem Vorschub zu bohren (nicht geringer als die Empfehlung des Werkzeugherstellers).

	Toolo	x® 33	Toolox® 44			
Schnittgeschwindigkeit: v [m/min]	65-	-90	40-	-65		
Durchmesser [mm]		Vorschul	o [mm/U]			
Durchinesser [mm]	minmax.	Startwert	minmax.	Startwert		
3,0-5,0	0,08-0,15	0,10	0,06-0,11	0,07		
5,01-10,0	0,09-0,16	0,12	0,08-0,13	0,10		
10,01-15,0	0,16-0,22	0,18	0,12-0,18	0,15		
15,01-20,0	0,22-0,28	0,25	0,16-0,20	0,18		

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TOOLOX® 33 / TOOLOX® 44

HM-Wechselschneidköpfe oder gelötete Schneiden kommen bei mittleren Durchmessern zum Einsatz. Schnittwerte entnehmen Sie der Tabelle.

	Toolo	x® 33	Toolox® 44		
Schnittgeschwindigkeit: v [m/min]	50-	-80	40-60		
Durchmesser [mm]		Vorschul	[mm/U]		
Durchinesser [mim]	minmax.	Startwert	minmax.	Startwert	
7,5-12,0	0,10-0,16	0,13	0,08-0,14	0,11	
12,01-20,0	0,15-0,23	0,20	0,12-0,20	0,15	
20,01-25,0	0,18-0,27	0,22	0,14-0,22	0,17	
25,01-30,0	0,20-0,30	0,24	0,16-0,25	0,19	

Überlange Bohrungen bis zu über 50 x D können auch auf Bearbeitungszentren mit IKZ sehr produktiv hergestellt werden, wenn man VHM-Bohrer mit spezieller Geometrie verwendet. Typische Schnittwerte zeigt die nachstehende Tabelle.

	Werkstoff	Härte	Drm.	Tiefe	rel. Tiefe	S	chnittda	ten	Kühlung
werkston		пагте	d [mm]	I [mm]	I/d	v _c [m/min] f [mm] v _f [mm/min]			Emulision
	Toolox® 33	300 HB	5	10	20	50	0,15	477	IK, p=20bar
	Toolox [®] 44	45 HRc	5	100	20	36	0,15	344	IK, p=20bar

Werksangaben Titex

	1400	1										
'n/	1200		1									
Vorschubgeschwindigkeit [mm/min]	1000			1				XD-Tect	unciopie			
ndigk	800	-		orsans	-		HM-Spirato	ofwer —				-
schwi	600	-				1	~	***************************************				-
hubge	400	-	HSS-	an an animal		-[600% Pr	oduktivit	ät			-
Vorsc	200			0.00						Emippen	Botrer	
	0	0	5	10	15	20	25	30	35	40	45	50
		Ū	Ü	.0			e Bohrtie		55	10	-73	50

Tiefbohren in Toolox® stellt eine besondere Herausforderung dar, die der renommierte Hersteller Botek mit einer besonderen Schneidengeometrie beherrschbar macht und wirtschaftlich löst. Die Einlippen-Vollbohrwerkzeuge Typ 110 mit Sondergeometrie für Durchmesser bis 12,0 mm sowie Einlippen-Tiefbohrwerkzeuge Typ 01 mit wechselbaren Schneidplatten und Führungsleisten in Sonderausführung ab Durchmesser 12,0 mm haben sich als hervorragende Lösung bewährt.

	Bohr-Ø	3	4	5	6	7-8	9-10	11-12	>12	ڀ
33	Schnittgeschwindigkeit [m/min]	50	50	50	50	40-50	40-50	40-50	40-50	Botek
8	Vorschub [mm/U]	0,005	0,01	0,015	0,0175	0,02	0,03	0,04	0,1	pen F
Toolox®	Kühlschmierstoffdruck [bar]	100	100	100	90	80	70	60	40	ngab
2	Anbohr-Strecke [mm]	40	40	50	60	60	70	70	70	ksar
	Anbohr-Vorschub [mm/U]	0,0025	0,005	0,0075	0,009	0,01	0,015	0,02	0,05	Werksa

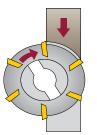
Erreichbarer Standweg mit Öl: ca. 10-12 Meter bei optimalen Prozessbedingungen

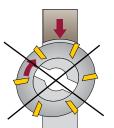
	Bohr-Ø	3	4	5	6	7	8	9-10	11-12	>12
4	Schnittgeschwindigkeit [m/min]	50	50	50	50	40-50	40-50	40-50	40-50	40-50
8	Vorschub [mm/U]	0,005	0,01	0,012	0,015	0,015	0,0175	0,02	0,03	0,07
Toolox®	Kühlschmierstoffdruck [bar]	100	100	100	90	90	80	70	60	40
10	Anbohr-Strecke [mm]	40	40	50	50	60	60	70	70	70
	Anbohr-Vorschub [mm/U]	0,0025	0,005	0,006	0,0075	0,0075	0,009	0,01	0,015	0,035

Für weitere Informationen kontaktieren Sie bitte

Fa. Botek (www.botek.de) und beziehen sich gerne auf uns. Erreichbarer Standweg mit Öl: ca. 2-3 Meter bei optimalen Prozessbedingungen

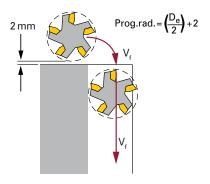
Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de




TOOLOX® 33 / TOOLOX® 44

Fräsen

Toolox® ist aufgrund äußerst geringer Eigenspannungen besonders verzugsarm, wenn man mit optimalen Parametern zerspant und keine unnötige Wärme ins Werkstück bringt. Lange Standzeiten erreicht man durch geschickte Frässtrategie und stabile Aufspannung sowie stets hinreichende Spandicke. Toolox hat eine besondere Gefügestruktur, die die Bearbeitung trotz der hohen Härte erleichtert. Karbide sind sehr harte und verschleißbeständige Gefügebestandteile. Deren mikroskopisch feine, kugelige Form im Toolox-Gefüge vermeidet die bei anderen Werkzeugstählen typische Schneidenschädigung. Ein hinreichend hoher Zahnvorschub sichert das Abtragen der Karbide gemeinsam mit dem Span, ein zu geringer Vorschub würde dagegen zu intensivem Abrasivverschleiß an der Schneide führen. Scharfe Schneiden mit positiver Geometrie sind optimal für Toolox. Wählen Sie Werkzeuge für die Bearbeitung hochvergüteter Stähle. Werkzeuge für die Hartbearbeitung (bis 60 HRC) sind ungeeignet, deren Schneiden haben meist negative Spanwinkel.


Einfahrt per "Roll-In" Verfahren Verschleiß nach 800 Bearbeitungsgängen

Gerade Einfahrt ins Werkstück Verschleiß nach 390 Bearbeitungsgängen

Einführen in das Schneideverfahren per "Roll-In" Verfahren

Planfräsen

Unterbrochene Schnitte fräsen sich besser mit runden Wendeplatten. Besonders hohe Produktivität erreicht man mit HPC-Werkzeugen. Auch Eckmesserköpfe sind für Toolox® geeignet.

Empfehlung für 45°-Fräser

1					
	Toolo	x® 33	Toolo	x® 44	
Schnittgeschwindigkeit: v [m/min]	180-	-220	120-160		
Vorschub: f _z [mm/Zahn]	minmax.	Startwert	minmax.	Startwert	
Wendeplattegüte P30	0,15-0,35	0,25	0,15-0,35	0,25	

Empfehlung für Planfräser mit runden Platten

	10010	X" 33	10010X° 44			
Schnittgeschwindigkeit: v [m/min]	180-	-220	140-	-180		
Vorschub: f _z [mm/Zahn]	minmax.	Startwert	minmax.	Startwert		
Wendeplattegüte P30	0,10-0,25	0,15	0,10-0,25	0,15		

Empfehlung für Eckfräser / Eckmesserköpfe

	Toolo	x® 33	Toolo	Toolox® 44		
Schnittgeschwindigkeit: v [m/min]	180-	-220	120-160			
Vorschub: f _z [mm/Zahn]	minmax. Startwert		minmax.	Startwert		
Wendeplattegüte P30	0,12-0,25	0,17	0,12-0,25	0,17		

Schnittwerte für HPC-Kopier- und Planfräser

	Werkstoff- Festigke			Kopierfräsen					Tauch-/Bohrzirkularfräsen									
Werk-		Fastinksit	Trockenbearbeitung		Nassbearbeitung		Trockenbearbeitung			,	Nassbearbeitung							
stoff- gruppe		N/mm2	N/mm2 Schneid- stoff	V _c [m/min]		Schneid- stoff V _C [m/min]		Schneid- stoff [m/min]		Schneid- stoff	[V _c m/min]					
				min	Start	max	1. Wahl	min	Start	max	1. Wahl mir	min	Start	max	1. Wahl	min	Start	max
8.2	Toolox® 33 Werkzeugstähle	900-1100	F25M	120	140	160	F25M	110	130	150	F25M	80	90	100	F25M	70	85	100
10.0	Toolox® 44 gehärtete Stähle	41-47 HRC	F15M	120	160	200	-	-	-	-	F15M	80	105	130	-	-	-	-

Werksangaben Hoffmann

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TOOLOX® 33 / TOOLOX® 44

Schaftfräsen

Beim Schlitzfräsen hat sich eine Tiefenzustellung ap von 0,5 x D bewährt, hinreichender Spanraum sollte vorhanden sein. Schaftfräsen bis hin zum Trochoidalfräsen ist mit ap in voller Schneidenlänge und ae von ca. 0,1 x D sehr produktiv. Trockenfräsen mit Druckluftkühlung zur Abfuhr von Spänen vermeidet Thermoschock und Überlast infolge eingezogener Späne.

Gewinde

Beide Toolox®-Werkstoffe können mit Maschinengewindebohrern bearbeitet werden. Erfahrene Schlosser bohren das Kernloch etwas größer. Besonders bewährt haben sich Schneidpaste, Schneidöl oder eine fettere Emulsion.

	Toolox® 33	Toolox® 44
Schnitt- geschwindigkeit: v [m/min]	7-10	3-5
Größe	Drehzah	l [1/min]
M5	445-635	190-320
M6	370-530	160-265
M8	270-400	120-200
M10	220-320	95-160
M12	185-265	80-130
M16	140-200	60-100
M20	110_160	45_80

Gewindefräsen ist ein produktives Verfahren für hohe Fertigungssicherheit, auch bei sehr kleinen Durchmessern und gerade dort, wo Gewindeschneiden schwierig ist.

	Toolox® 33	Toolox® 44		
Schnitt- geschwindigkeit: v [m/min]	80-110	50-70		
Vorschub: f _z [mm/Zahn]	0,03-0,06	0,02-0,05		

Flachsenken sowie Kegelsenken sind mit Wendeplattenwerkzeugen problemlos auf Bearbeitungszentren möglich. Für weniger stabile Maschinen haben sich Senker mit mitlaufenden Führungszapfen bewährt.

	Toolox® 33	Toolox® 44			
Schnitt- geschwindigkeit: v [m/min]	0,10-0,20	0,10-0,20			
Durchmesser [mm]	Drehzahl [1/min]				
19	670-1340	335-840			
24	530-1060	265-665			
34	375-750	185-470			
42	300-600	150-380			
57	225-440	110-280			

Polieren von Toolox®

- 1. Feinschliff mit einem groben Schleifmittel (z.B. Korngröße 120). Alle Spuren der Verarbeitung oder des Erodierens werden hierbei 7. Gehen Sie jetzt vor wie in Schritt 6, verwenden Sie jedoch anstelle komplett abgeschliffen. Vorzugsweise sollte hierbei die flache Seite des Schleifmittels zum Einsatz kommen. Variieren Sie die Schleifrichtung in X-Form, um eine absolut flache Oberfläche zu erzielen, Ihre Arbeit effizienter zu gestalten und gleichzeitig Zeit zu
- 2. Feinschliff wie in Schritt 1, jedoch mit einer feineren Korngröße wie z.B. 320. Alle nach dem vorherigen Schliff noch verbliebenen 8. Polierung mit 3 µm Diamantpaste auf einem Stück Filz bis alle aus Spuren werden hierbei komplett beseitigt.
- 3. Grobpolierung mit Diamantpaste auf einem Stück Messing. Korngröße 45µm. Diese Grobpolierung wird durchgeführt bis alle 9. Als abschließenden Schritt polieren Sie jetzt mit Diamantpaste der verbliebenen Spuren und Kratzer des vorangegangenen Arbeitsschritts (Schritt 2) gänzlich beseitigt sind.

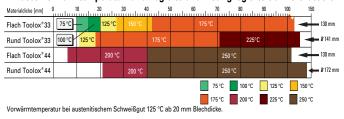
- 4. Vorgehensweise wie in Schritt3, jedoch mit 15 μm Diamantpaste bis alle nach Schritt 3 noch vorhandenen Spuren verschwunden sind.
- 5. In diesem Schritt gehen Sie vor wie in Schritt 4, verwenden jetzt aber eine Diamantpaste mit 7 µm. Auch dieser Schritt wird fortgesetzt, bis alle aus Schritt 4 verbliebenen Spuren entfernt sind.
- 6. Polieren Sie mit Diamantpaste (7 µm) auf einem Faser- oder Plastikelement. Fahren Sie fort bis die letzten aus Schritt 5 noch verbliebenen Unebenheiten beseitigt sind.
- von 7µm-Paste eine Diamantpaste mit lediglich 3µm. Fahren Sie fort bis die letzten aus Schritt 6 verbliebenen Nuancen von Unebenheiten beseitigt sind. (Wir wählen hier das Wort "Nuance", da bis jetzt die Oberfläche bereits so eben und fein ist, dass man eigentlich von keinerlei für das bloße Auge noch erkennbare Kratzersprechen kann.)
- dem vorangegangenen Schritt noch vorhandenen Nuancen entfernt sind.
- Korngröße 3 um und Watte. Dieses ist Handarbeit und hierbei wird der endgültige Glanz erzielt. Fahren Sie fort bis die gesamte Oberfläche einen einheitlichen Glanz aufweist.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TOOLOX® 33 / TOOLOX® 44

Schweißen von Toolox®

Toolox® ist unter Beachtung der nachstehenden Hinweise gut schweißbar. Das Kohlenstoffäquivalent ist für


Toolox® 33 CE_{IIW} 0,62-0,71 / CET 0,4-0,44 und für

Toolox® 44 CE_{IIM} 0,92-0,96 / CET 0,55-0,57.

Geeignet für das Schweißen ohne Vorwärmung sind austenitische Schweißzusätze AWS 307 oder AWS 309. Es ergibt sich eine Festigkeit von ca. R_{p0.2} = 500 MPa in der Naht. Unlegierte oder niedrig legierte 3. Schweißen Sie mit einer Wärmezufuhr, die einen Δt_{8/5}Wert zwischen Schweißzusätze ergeben Festigkeiten bis ca. $R_{p0,2}$ = 930 MPa und gute Zähigkeit. Zur Auswahl der Schweißzusätze siehe auch Seite 84.

1. Wärmen Sie beide Seiten der Schweißfuge vor, und zwar etwa 100-150mm auf jeder Seite. Die Vorwärmtemperatur sollte in der 5. Führen Sie eine Wärmebehandlung nach dem Schweißen im Bereich Mitte des Bleches erreicht werden. Behalten Sie die Vorwärmtemperatur während des gesamten Schweißvorgangs bei, insbesondere beim Heftschweißen.

Mindest-Vorwärmtemperatur für unlegierte und niedrig legierte Schweißzusätze

2. Verwenden Sie möglichst weiche oder rostfreie Elektroden. Die Elektroden müssen trocken sein. Der maximal zulässige Wasser-

- stoffgehalt beträgt 5ml/100g Schweißgut. Um eine optimale Texturbildungsqualität zu erzielen, sollte das Schweißen unter Anwendung des WIG-Verfahrens mit einem Zusatzdraht mit derselben chemischen Zusammensetzung wie der Grundwerkstoff durchgeführt werden. Die einfachste Methode besteht dann darin, eine Stange von einem übrig gebliebenen Teil des Grundwerkstoffs abzusägen.
- 10 und 20s ergibt.
- 4. Beim Schweißen sollte eine Zwischenlagentemperatur von höchstens * 170°C für Toolox® 33 *225°C für Toolox® 44 erreicht sein, bevor die nächste Lage geschweißt wird.
- von etwa 100-150 mm ab jeder Seite der Schweißnaht durch. Die Durchwärmzeit sollte 5min/mm Blechdicke oder mindestens 60 Minuten betragen. Normalerweise ist eine Durchwärmzeit von 2 Stunden ausreichend. Der Beginn der Durchwärmzeit ist der Zeitpunkt, zu dem die Temperatur im gesamten Anlassvolumen erreicht ist.
- Die Wärmebehandlung nach dem Schweißen sollte mit einer Temperatur von 150-200°C durchgeführt werden, falls nur geringe Anforderungen hinsichtlich der Formstabilität gestellt werden.
- * Die Wärmebehandlung nach dem Schweißen sollte mit einer Temperatur von 560-580°C durchgeführt werden, falls hohe Anforderungen hinsichtlich der Formstabilität gestellt werden und der Einfluss der Schweißnaht auf das Texturbildungsergebnis minimiert werden soll.

Rohmaterial

Bleche (Quartoblech, warmgewalzt) oder Bandstahlblech (kaltgewalzt oder warmgewalzt) und Zuschnitte daraus.

	Dickenbereiche [mm]											
	0,7-2,1	2,0-8,0 3,2-80,0		80,1-103,0	103,1-130,0							
Härte	425-485 HV	425-475 HBW	425-475 HBW	410-475 HBW	390-475 HBW							
Herstellung	Kaltband	Warmband	Quartoblech	Quartoblech	Quartoblech							

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

HARDOX® 450

Richtanalyse/Chemische Zusammensetzung [%]

		C *)	Si*)	Mn*))	P *)	S *)	Cr*)	Ni*)	Mo*)	B *)
Kaltband	max.	0,18	0,25	1,30	0,015	0,004	0,10	0,10	0,04	0,003
Warmband & Quartoblech	max.	0,26	0,70	1,60	0,025	0,010	1,40	1,50	0,60	0,005

Werkstoffblatt

Der Stahl ist ein Feinkornstahl. *) Vorgesehene Legierungselemente.

Hardox[®] 450 ist ein gehärteter Verschleißstahl für vielfältige Anwendungen. Er kann durch Biegen umgeformt werden uns lässt sich problemlos schweißen.

Härte HBW 425–475 (Quartoblech 3,2 – 80,0 mm Dicke, weitere Dicken siehe Tabelle Seite 78)

(Garantierter Wert)

Kerbschlagarbeit Prüftemperatur Kerbschlagarbeit

(Garantierter Wert) -40°C Charpy-V in Längsrichtung mindestens 50 J

Streckgrenze ca. 1.250 MPa

(Typischer Wert, nicht garantiert)

Lieferzustand Gehärtet und angelassen

Wärmebehandlung Hardox® 450 ist für weitere Wärmebehandlung nicht vorgesehen. Die Eigenschaften können nicht aufrecht

erhalten werden, wenn der Stahl Temperaturen über 250°C ausgesetzt wird.

Hinweis: Für Anwendungen bei höheren Temperaturen bis zu 590°C empfehlen wir Toolox® 44.

Oberflächen Gemäß EN 10163-2 Klasse A, Unterklasse 1

Ebenheit

Toleranzen gemäß Hardox® Ebenheitsgarantie Klasse D für Quartoblech, strikter als EN 10029. Für Warmband gemäß Hardox® Ebenheitsgarantie Klasse A, enger als EN 10051, für Kaltband gemäß Hardox® Ebenheitsgarantie Klasse B.

		Dickenbereiche [mm]										
	0,7-2,1	2,0-8,0	3,2-3,9	4,0-4,9	5,0-5,9	6,0-19,9	20,0-130,0					
Warmband Klasse A		3mm										
Kaltband Klasse B	6mm											
Quartoblech Klasse D			15 mm	7 mm	5mm	4mm	3mm					

Angegeben ist jeweils die Ebenheit, gemessen in mm an einem 1-m-Lineal.

Hinweis: Toolox® 44-Quartobleche erfüllen engere Ebenheitsanforderungen für Dicken von

 $5,0-7,9\,\mathrm{mm} = 4\,\mathrm{mm}/1.000\,\mathrm{mm}, 8\,\mathrm{mm}/2.000\,\mathrm{mm}$ und $8,0-99,9\,\mathrm{mm} = 3\,\mathrm{mm}/1.000\,\mathrm{mm}, 6\,\mathrm{mm}/2.000\,\mathrm{mm}$

Schweißbarkeit

(Bitte Hinweise ab Seite 84 beachten)

		Kohlenstoffäquivalent CET (CEV)												
Dicke	Kaltband 0,7–2,1	Warmband 2,0-8,0	Blech 3,2-4,9	Blech 5,0-9,9	Quartoblech 10,0–19,9	Quartoblech 20,0-39,9	Quartoblech 80,1–130,0							
Max.	0,33 (0,44)	0,35 (0,48)	0,37 (0,48)	0,38 (0,49)	0,39 (0,52)	0,41 (0,60)	0,43 (0,74)	0,41 (0,67)						
Тур.	0,31 (0,39)	0,26 (0,39)	0,29 (0,39)	0,33 (0,45)	0,36 (0,48)	0,38 (0,56)	0,38 (0,61)	0,39 (0,64)						

$$CET = C + \frac{Mn + Mo}{10} + \frac{Cr + Cu}{20} + \frac{Ni}{40}$$

$$CEV = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cu + Ni}{15}$$

Biegen

Die Biegbarkeit für Quartoblech entspricht der Hardox[®] Biegegarantie Klasse E. Bandblech entspricht der Hardox[®] Biegegarantie Klasse C für Kaltband und Klasse B für Warmband. Die Garantien entsprechen mindestens DIN EN 10025-6 und EN ISO 7438. Genannt ist das Verhältnis Biegewerkzeugradius/Blechdicke.

		Dickenbereiche [mm]											
	0,7-2,9	2,0-3,9	4,0-7,9	8,0-14,9	15,0-19,9	≥ 20,0							
Warmband Klasse B		13,0 4,0	13,0 3,5										
Kaltband Klasse C	14,0 4,0												
Quartoblech Klasse E		13,0 4,5	13,0 3,5	13,5 4,5	13,5 4,5	14,5 5,0							

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

HARDOX® 600

Werkstoffblatt

	C*)	Si*)	Mn*)	P*)	S*)	Cr*)	Ni*)	Mo*)	B *)
max.	0,47	0,70	1,40	0,015	0,01	1,20	2,50	0,70	0,005

Der Stahl ist ein Feinkornstahl. *) Vorgesehene Legierungselemente

Hardox® 600 ist ein extraharter und zäher Verschleißstahl für extreme Verschleißbedingungen.

Härte HBW 570-640 (Dicken über 51 mm: 550-640 HBW). Die Bleche sind bis auf 90% der garantierten

(Garantierter Wert) Mindest-Oberflächenhärte durchgehärtet.

Wärmebehandlung Hardox® 600 ist für weitere Wärmebehandlung nicht vorgesehen.

Die im Lieferzustand vorhandenen Eigenschaften können nicht aufrecht erhalten werden, wenn der Stahl

Temperaturen über 250°C ausgesetzt wird.

Lieferzustand Gehärtet und angelassen

Oberflächen Gemäß EN 10163-2 Klasse A, Unterklasse 1

Ebenheit Toleranzen gemäß Hardox®-Ebenheitsgarantien Klasse E, diese sind strikter als die Toleranzen

nach DIN EN 10029 Klasse N.

		Dickenbereiche [mm]							
	6,0-7,9	8,0-24,9	25,0-39,9	40,0-65,0					
Klasse E	11mm	10 mm	9mm	8mm					

Angegeben ist jeweils die Ebenheit, gemessen in mm an einem 1-m-Lineal.

Schweißbarkeit

(Bitte Hinweise ab Seite 82 beachten)

	Kohlenstoffäquivalent CET [CEV]				
Dicke	6,0-35,0	35,1-65,0			
Max.	0,57 (0,69)	0,61 (0,87)			
Тур.	0,55 (0,66)	0,59 (0,85)			

$$CET = C + \frac{Mn + Mo}{10} + \frac{Cr + Cu}{20} + \frac{Ni}{40} \qquad CEV = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cu + Ni}{15}$$

HARDOX°

Schweißhinweise

Hardox® verbindet einzigartige Verschleißfestigkeit mit hervorragender Schweißbarkeit. Alle üblichen Schweißverfahren können für Verbindungen von Hardox® mit schweißbaren Stählen verwendet werden.

Für beste Schweißergebnisse achten Sie auf Trockenheit, Sauberkeit und Korrosionsfreiheit. Besonderes Augenmerk richten Sie auf die Auswahl des Schweißgutes, Temperaturen, Wärmeeintrag und die Fugengeometrie.

Niedriglegierte oder unlegierte Schweißwerkstoffe mit einer Zugfestigkeit von 500 MPa sind für Hardox® und Toolox® verwendbar. Hardox® 450 in Dicken von 0,7–6,0mm erlauben Werkstoffe mit Festigkeiten von 900 MPa. Niedrig legierte Werkstoffe ergeben eine höhere Härte, was die Verschleißfestigkeit begünstigt. Wenn die Verschleißfestigkeit der Schweißnaht ausschlaggebend ist, so kann man an das Aufschweißen einer Verschleißschutzschicht denken.

Rostfreie Schweißzusätze können für alle Hardox®-Stähle verwendet werden, für Toolox® 44 sollten diese bevorzugt werden. Sie erlauben das Schweißen bei 5–20°C ohne Vorwärmung, außer bei Hardox® 600 und Hardox® Extreme.

SSAB empfiehlt die folgenden Werkstoffe, die eine Streckgrenze von 500 MPa ergeben.

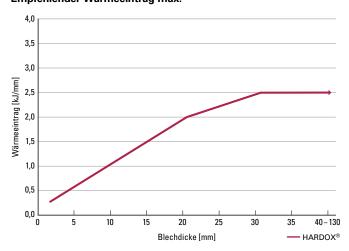
Schweißverfahren	DIN EN ISO-Einteilung
MAG/Massivelektrode	EN ISO 14341-A- G 38x EN ISO 14341-A- G 42x
MAG/Fülldrahtelektrode	EN ISO 17632-A- T 42xH5 EN ISO 17632-A- T 46xH5
MAG/Metallpuler-Fülldrahtelektrode	EN ISO 17632-A- T 42xH5 EN ISO 17632-A- T 46xH5
MMA/Stabelektrode	EN ISO 2560-A E 42xH5 EN ISO 2560-A E 46xH5
JP Unter-Pulver-Schweißen	EN ISO 14171-A- S 42x EN ISO 14171-A- S 46x
NIG	EN ISO 636-A- W 42x EN ISO 636-A- W 46x

Schweißverfahren	DIN EN ISO-Einteilung
MAG/Massivelektrode	EN ISO 14343-A: B 18 8 Mn/ EN ISO 14343-B: SS307
MAG/Fülldrahtelektrode	EN ISO 17633-A: T 18 8 Mn/ EN ISO 17633-B: TS307
MAG/Metallpuler-Fülldrahtelektrode	EN ISO 17633-A: T 18 8 Mn/ EN ISO 17633-B: TS307
MMA/Stabelektrode	EN ISO 3581-A: 18 8 Mn/ EN ISO 3581-B: 307
UP Unter-Pulver-Schweißen	EN ISO 14343-A: B 18 8 Mn/ EN ISO 14343-B: SS307
WIG	EN ISO 14343-A: W 18 8 Mn/ EN ISO 14343-B: SS307

austenitische Zusätze

niedrig- oder unlegierte Zusätze

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de



HARDOX® 450/HARDOX® 600

Als Schutzgas verwendet man beim Hardox®-Schweißen grundsätzlich die selben Gase wie beim Schweißen niedrig- oder unlegierter Stähle.

Empfehlender Wärmeeintrag max.

$$Q = \frac{k \cdot U \cdot I \cdot 60}{v \cdot 1000} \text{ kJ/mm}$$

Der Streckenenergie-Wärmeeintrag ist bei den verschiedenen Verfahren unterschiedlich. Die thermische Effizienz k beim MAG-Schweißen und MMA-Schweißen beträgt etwa 0,8, beim UP-Schweißen ca. 1,0 sowie beim WIG-Schweißen 0,6. Mit Spannung (U [V]), Strom (I [A]) und Vorschub (v [mm/min]) erhält man den Wärmeeintrag. Die Grafik zeigt die Empfehlungen für Höchstwerte. Ein sehr niedriger Eintrag mag negativen Einfluss auf die Kerbschlagzähigkeit die Schweißnaht haben, extrem hohe Werte bedeuten eine vergrößerte Wärmeeinflusszone, in der die mechanischen Werte verändert werden. Moderat niedrige Werte verbesssern die Verschleißbeständigkeit, den Verzug, die Zähigkeit und die Festigkeit.

Wasserstoffgehalt

Die Gefahr der Wasserstoffversprödung ist wegen des niedrigen Kohlenstoffäquivalents geringer als bei anderen Verschleißstählen. Der Gefahr begegnet man zudem durch: • Vorwärmen des Schweißbereichs

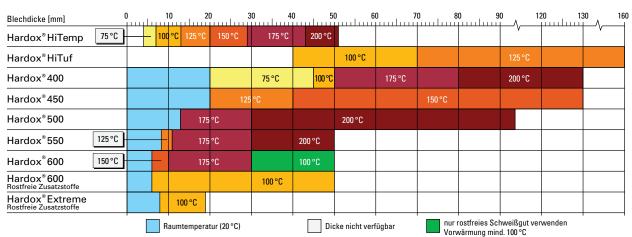
- · Messung der Vorwärmtemperatur
- Verwendung von Schweißzusatzstoffen mit höchstens 5 ml Wasser/100 g
- Freihalten der Schweißfuge von Rost, Fett, Öl und Kälte
- · Anwenden eines geeigneten Schweißverfahrens
- · Vermeidung eines Schweißspaltes über 3mm an der engsten Stelle der Schweißfuge

Vorwärmung

Vorwärmung ist äußerst wichtig für eine gute Schweißnaht. Die empfohlenen Vorwärmtemperaturen zeigt die nachfolgende Tabelle für niedrig- oder unlegierte Werkstoffe.

Bitte beachten Sie: • Für Bleche unterschiedlicher Dicke orientieren Sie sich am dickeren Blech.

- Für unterschiedliche Blechwerkstoffe orientieren Sie sich an dem mit der höheren Vorwärmtemperatur.
- Für Wärmeeintrag unter 1,7 kJ/mm erhöhen Sie die Temperatur um 25°C, unter 1,0 kJ/mm orientieren Sie sich bitte im WearCalc-Programm.
- · Bei niedrigen Außentemperaturen oder hoher Luftfeuchtigkeit erhöhen Sie die Temperatur um 25°C.
- Bei DV- oder DY-Nähten legen Sie die erste Raupe außerhalb der Blechmitte an.


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

HARDOX® 450/HARDOX® 600

Empfohlene Mindest-Arbeitstemperatur

Die Höchsttemperaturen nach dem Schweißen einer Lage und vor Aufschweißen einer weiteren Lage sind:

Hardox [®] HiTemp	300°C
Hardox [®] HiTuf	300°C
Hardox® 400	225°C
Hardox® 450	225°C
Hardox® 500	225°C
Hardox® 550	225°C
Hardox® 600	225°C
Hardox® Extreme	100°C

Verwendung von Heizmatten

Elektrische Vorwärmung hat sich bewährt.
Es ist praktisch, die Temperatur an der Rückseite zu messen.
Dabei empfiehlt sich, etwa 2 min/25 mm Blechdicke abzuwarten.
Die Temperatur sollte ca. 75 –150 mm beidseitig der Schweißfuge erreicht sein.

Grundierte Bleche

Durch den geringen Zinkgehalt kann direkt auf der Hardox®-Grundierung geschweißt werden, gleichwohl ist es vorteilhaft, die Grundierung mit der Drahtbürste zu entfernen, um Porositäten zuvermeiden. Gute Belüftung ist wichtig für die Gesundheit des Schweißers und der Personen in der Nähe.

Wärmebehandlung

Eine Wärmebehandlung nach dem Schweißen ist nicht vorgesehen, um die mechanischen Eigenschaften von Hardox® zu erhalten.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

HARDOX® 450/HARDOX® 600

Thermisches Trennen von Hardox®

Hardox®-Werkstoffe sind besonders reine Stähle, ihr niedriger Legierungsgehalt bewirkt, dass diese leicht thermisch zu trennen sind. Dabei kann man sowohl laserschneiden, plasmaschneiden als auch brennschneiden.

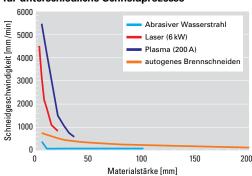
Toolox® hingegen sollte möglichst nur kalt getrennt werden, um das einzigartig spannungsarme Gefüge zu erhalten. In Frage kommen daher das Sägen, Wasserstrahlschneiden oder Scheren; das Laserschneiden ist auf recht dünne Bleche beschränkt.

Thermisches Trennen von Hardox® ist so einfach wie bei Baustählen. Lediglich bei dickeren Abmessungen sollte man Vorkehrungen treffen, um Kantenrisse zu vermeiden. In der Wärmeeinflusszone tritt naturgemäß ein Verlust an Härte dieser vergüteten Stähle ein.

Risse an Schneidkanten sind denen durch Wasserstoffversprödung ähnlich. Sie können zwischen 48h und einigen Wochen nach dem Schnitt auftreten, es handelt sich also um einen verzögerten Prozess. Das Risiko steigt mit Härte und Blechdicke, es kann mit den nachstehenden Vorkehrungen vermindert werden: • Vorwärmung des Werkstückes

- Vorwarmung des WerkstuckesNachwärmung nach dem Schnitt
- reduzierter Vorschub beim Schnitt
- Kombination aus Vorwärmung, Nachwärmung, Vorschubreduzierung und langsame Abkühlung der Wärmeeinflusszone.

Bei allen Arten des Laserschneidens sowie beim Plasmaschneiden unter Stickstoff wird Vorwärmung nicht empfohlen, da diese negativen Einfluss auf die Schnittqualität haben könnte. Die Vorwärmung beim Brennschneiden und Plasmaschneiden mit Sauerstoff empfiehlt sich im Ofen, mit Schweißflamme oder elektrischen Wärmematten durchzuführen. Ofenerwärmung ist vorzuziehen, sie ergibt gleichmäßige Temperaturen des gesamten Bleches. Die Abbildung zeigt die Vorwärmung mit Flamme. Dabei achte man darauf, dass die Flammen stets in Bewegung bleiben, um das Blech nicht lokal zu überhitzen. Die Temperatur misst man vorzugsweise an der Rückseite. Bei Verwendung elektrischer Matten erwärmt man etwa über Nacht auf 150°–200°C und schneidet morgens.


Nachwärmung ist ein zuverlässiges Verfahren zur Rissvermeidung, auch hier finden Ofen oder Flamme Verwendung. Dabei ist es wichtig, so bald wie möglich nachzuwärmen, mit höchstens 30 Minuten Wartezeit. Die Temperaturen in der unteren Tabelle sollten nicht überschritten werden. Die Nachwärmzeit im Ofen kann als Faustregel mit etwa 5 Minuten pro mm Blechdicke angenommen werden. Mit der Flamme sollten 700°C an der Schnittkante nicht überschritten werden, das entspricht einem recht dunklen Rot, bei höheren Temperaturen muss die Nachwärmung wiederholt werden.

Vorwärmtemperaturen für Brennschneiden der Hardox®-Typen

vorwanntemperaturen für breimschheiden der nardox -typ						
	Plattendicke	Vorheiztem	peratur [°C]			
	[mm]	min	max			
Hardox® HiTemp	5-51	kein Vorwärmen	500			
Hardox® HiTuf	<90 ≥90	kein Vorwärmen 100	300			
Hardox [®] 400	<45 45-59,9 60-80 >80	kein Vorwärmen 100 150 175	225			
Hardox [®] 450	<40 40−49,9 50−69,9 ≥70	kein Vorwärmen 100 150 175	225			
Hardox [®] 500	<25 25-49,9 50-59,9 ≥60	kein Vorwärmen 100 150 175	225			
Hardox [®] 550	<20 20-51 >51	kein Vorwärmen 150 175	200			
Hardox® 600	<12 12-65	kein Vorwärmen 175	180			
Hardox® Extreme*	8-19	100	100			

^{*} SSAB empfiehlt Wasserstrahlschneiden. Wenn nur Brennschneiden verfügbar ist, folgen Sie den Empfehlungen in der Tabelle.

Schnittgeschwindigkeit in Abhängigkeit von der Materialstärke für unterschiedliche Schneidprozesse

Bei niedriger Vorschubgeschwindigkeit wird die Wärmeeinflusszone größer, Restspannungen werden geringer, die Rissgefahr sinkt. Man bedenke, dass langsames Schneiden nicht so zuverlässig Risse vermeidet wie Vor- oder Nachwärmen. Die Geschwindigkeit in der oberen Abbildung sollte, abhängig von der Blechdicke, nicht überschritten werden.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

HARDOX® 450/HARDOX® 600

Zuschnitte oder die Abdeckung mit Isoliermatten.

Scharfe Ecken in der Schneidkontur begünstigen Risse, solche lassen sich am besten konstruktiv vermeiden. Das Abtrennen scharfer Ecken am Schneidrest hat sich bewährt, um das Restblech rissfrei zu halten.

210

200

190

180

210

200

190

180

Unabhängig davon, ob vorgewärmt wurde, reduziert langsame Brennschneiden ist auch bei sehr dicken Blechen möglich, der Druck Abkühlung die Gefahr von Rissen. Hilfreich ist das enge Stapeln der des Schneidgases ist unabhängig von der Härte des Bleches. Die Schneidgeschwindigkeit sollte die Werte in der folgenden Tabelle nicht überschreiten.

			Maximale Schneidgeschwindigkeit für Brennschneiden ohne Vorwärmen [mm/min]										
		Hardox® HiTemp	Hardox® HiTuf	Hardox® 400	Hardox® 450	Hardox® 500	Hardox® 550	Hardox® 600	Hardox® Extreme				
	12	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	**				
	15	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	300	**				
[m	20	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	200	**				
m]	25	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	300	270	180					
ttendicke	30	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	250	230	150					
lpu	35	keine Beschränkung	keine Beschränkung	keine Beschränkung	keine Beschränkung	230	190	140					
atte	40	keine Beschränkung	keine Beschränkung	keine Beschränkung	230	200	160	130					
Pla	45	keine Beschränkung	230	230	200	170	140	120					
0 0													

180

170

160

150

50

70

80

>80

Maxima 60 keine Beschränkung

130

150

140

135

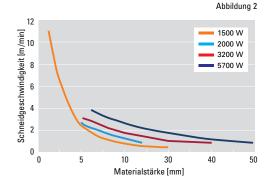
130

110

nur mit Vorwärmen möglich

^{**} SSAB empfiehlt Wasserstrahlschneiden.

Langsames Schneiden reicht nicht aus um Rissen beim Schneiden von Hardox® Extreme entgegenzuwirken. Wenn nur das Brennschneiden zur Verfügung steht, nutzen Sie das Vorwärmen und das Nachwärmen mit einem Brenner zusammen.


Abbildung 1

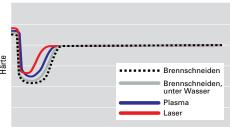
Plasmaschneiden wird hauptsächlich bis 50mm Dicke angewandt, Abbildung 1 zeigt die Vorschübe. Hardox® 600 und Hardox® Extreme müssen vor- oder nachgewärmt werden.

Plasmagas: Sauerstoff 6 Schutzgas: Luft Schneidgeschwindigkeit [m/min] 80 A 5 130 A 200 A 4 **260** A 400 A 3 2 1 0 0 10 20 30 40 50 Materialstärke [mm]

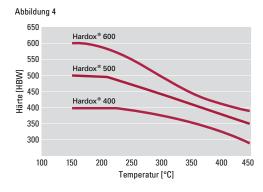
dox Hardox

Laserschneiden ist bis etwa 25 mm üblich, Vorschübe zeigt die Abbildung 2. Vorwärmung ist nicht erforderlich, sie schadet eher in Hinblick auf die Schnittqualität. Hardox® wird grundiert geliefert, die Grundierung reduziert jedoch die Schnittgeschwindigkeit. Dem kann mit einem vorgelagerten "Verdampfungsschnitt" begegnet werden.

WebShop: www.stahlnetz.de


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

HARDOX® 450/HARDOX® 600



Abstand von der Schnittkante

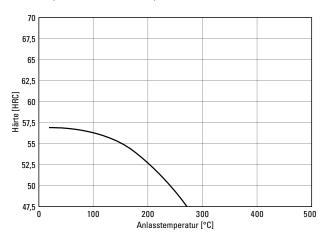
Der Eigenschaft der Wärmeeinflusszone hängt von

- · der vorangegangenen Wärmebehandlung des Stahls,
- der Legierung sowie
- dem thermischen Einfluss des Schneidens ab.
 Langsames Schneiden vergrößert die Einflusszone.
 Brennschneiden zeigt den größten Einfluss, gefolgt vom Plasmaschneiden, die geringste Wirkung zieht Laserschneiden nach sich.
 Einen Überblick gibt Abbildung 3.

Ein Härteverlust stellt sich bei kleinen Werkstücken besonders leicht ein. Als Anhaltswert muss man bei Blechen über 30 mm Dicke von einem vollflächigen Härteverlust ausgehen, wenn Schneidkanten weniger als 200 mm voneinander entfernt sind. Hier empfehlen sich kalte Schneidverfahren, notfalls ist Laserschneiden oder Plasmaschneiden der Vorzug vor dem Brennscheiden zu geben. Unterwasserschneiden reduziert den Härteverlust in der Wärmeeinflusszone, allerdings ist hier Vorwärmung nicht möglich. Daher sollte Nachwärmung und verringerter Vorschub erwogen werden. Abbildung 4 zeigt die Härte in Abhängigkeit von der Anlasstemperatur.

	С	Si	Mn	P	S
max.	0,50	0,40	0,80	0,03	0,03
min.	0,42	0,15	0,60		

Unlegierter Werkzeugstahl zur Herstellung von Vorrichtungs- und Maschinenteilen sowie Grundplatten und Distanzleisten von Werkzeugen - der Standardwerkstoff für einfache Maschinenteile.


Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen), EcoPlan®, VarioPlan®, VarioRond® und als Rohmaterialzuschnitt.

1.1730 erhalten Sie bei uns auch individuell nach Ihren Angaben als fertig bearbeitetes Zeichnungsteil.

Farbkennzeichnung: Weiß

Anlassschaubild

Härtetemperatur: 810° C, Probequerschnitt: Vkt. 20 mm

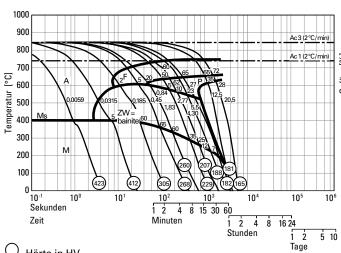
Wärmebehandlungsschema

WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

1.7131 16 MnCr 5

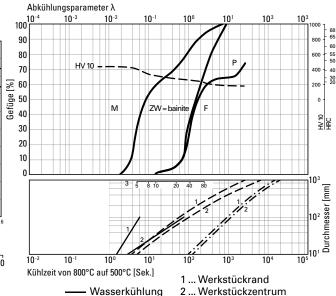
Einsatzstahl zur Herstellung von hochbeanspruchten und verschleißfesten Bauteilen aller Art.


Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl Sonderanfertigung, EcoPlan®, VarioPlan®, VarioRond® und als Rohmaterialzuschnitt.

Chemische Zusammensetzung [%]

	С	Si	Mn	Cr
max.	0,19	0,4	1,3	1,1
min.	0,14		1,0	0,8

ZTU-Schaubild für kontinuierliche Abkühlung


Austenitisierungstemperatur: 870°C, Haltedauer: 10 Minuten

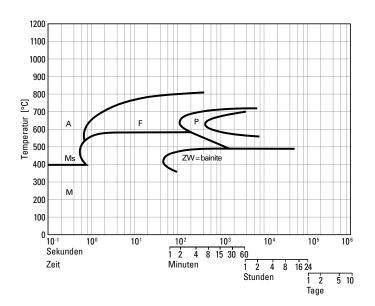
Härte in HV 2...72 Gefügeanteile in % 0,0059 . . . 20,6 Abkühlungsparameter, d. h. Abkühlungsdauer von 800-500°C in s x 10⁻² 1.7131 erhalten Sie bei uns auch individuell nach Ihren Angaben als Maschinenbauteil oder fertig wärmebehandelte Führungsleiste.

Farbkennzeichnung: Mint

Gefügemengenschaubild

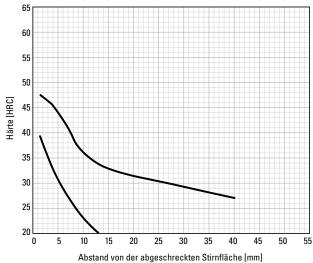
-- Ölabkühlung

- • - Luftabkühlung


- 3 ... Jominy Probe: Abstand von der Stirnfläche

GEBRÜDER RECKNAGEL

	С	Si	Mn	Cr
max.	0,19	0,4	1,3	1,1
min.	0,14		1,0	0,8


Isothermisches ZTU-Schaubild

Austenitisierungstemperatur: 870°C, Haltedauer: 10 Minuten

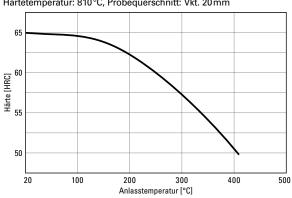
Stirnabschreckversuch

Härtetemperatur: 870°C

WebShop:

Telefon: +49 (0) 3 68 44/480 - 0 • Telefax: +49 (0) 3 68 44/480 - 55 • grp@stahlnetz.de

1.2842 90 MnCrV 8


Kaltarbeitswerkzeugstahl zur Herstellung von Werkzeugen, Lehren, Vorrichtungen, Schablonen, Führungsleisten und Bauteilen aller Art.

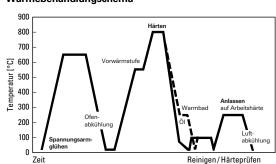
Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen), VarioPlan®, VarioRond® und als Rohmaterialzuschnitt.

1.2842 erhalten Sie bei uns auch individuell nach Ihren Angaben als Standardwerkstoff für Maschinenbauteile und gehärtete Führungsleisten bis 40 mm Dicke.

Anlassschaubild

Härtetemperatur: 810°C, Probequerschnitt: Vkt. 20 mm

Chemische Zusammensetzung [%]

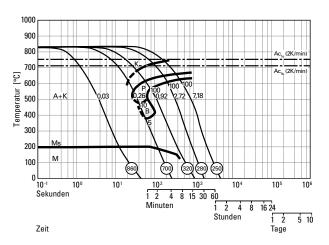

	С	Si	Mn	Cr	V
max.	0,95	0,40	2,20	0,50	0,20
min.	0,85	0,10	1,80	0,20	0,05

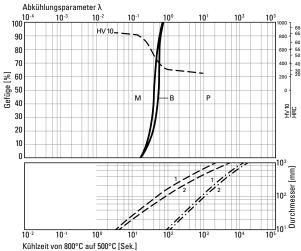
Bei der Wärmebehandlung ist darauf zu achten, dass 1.2842 ein Durchhärter ist, der bei der Wärmebehandlung eine Volumenveränderung von ca. 1‰ erfährt, sich jedoch sehr verzugsarm verhält. Werkstückquerschnitte über 40 mm Dicke könnten teilweise niedrigere Härten als 58-62 HRC nach sich ziehen. Für größere Bauteilquerschnitte von Führungsleisten empfehlen wir 1.2363 oder 1.2379, für Verschleißteile auch 1.2436. Für ungehärtete Bauteile empfehlen wir Toolox 33: günstiger trotz höherer Festigkeit! Die Bearbeitbarkeit ist gut und problemlos.

Die Gefahr von Rissen beim Reparaturschweißen ist, wie allgemein bei Werkzeugstählen, vorhanden.

Farbkennzeichnung: Blau

Wärmebehandlungschema


WebShop: www.stahlnetz.de


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 820 °C, Haltedauer: 15 Minuten

Gefügemengenschaubild

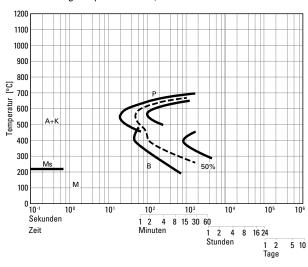
Härte in HV

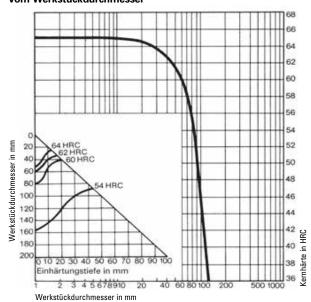
5... 100 Gefügeanteile in %

0,03...7, 18 Abkühlungsparameter,
d. h. Abkühlungsdauer von 800–500°C in s x 10⁻²

B....... Bainit

--- Ölabkühlung -•- Luftabkühlung 1 Werkstückrand 2 Werkstückzentrum


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de


1.2842 90 MnCrV 8

Isothermisches ZTU-Schaubild

Austenitisierungstemperatur: 820 °C, Haltedauer: 15 Minuten

Abhängigkeit der Kernhärte und der Einhärtetiefe vom Werkstückdurchmesser

Härtetemperatur: 820°C Härtemittel: Öl

	С	Si	Mn	P	s	Cr	Мо	V
max.	1,05	0,4	0,8	0,03	0,03	5,5	1,2	0,35
min.	0,95	0,1	0,4			4,8	0,9	0,15

Kaltarbeitswerkzeugstahl zur Herstellung von Schneidwerkzeugen, Gewindewalzbacken sowie Scherenmessern und gehärteten Führungsleisten großer Querschnitte.

Der Werkstoff 1.2363 schließt eine Lücke zwischen dem 1.2842 und dem 1.2379. Er lässt sich ähnlich dem 1.2842 problemlos bearbeiten. Auch das Schleifen gehärteter Bauteile ist einfach verglichen mit dem 1.2379. 1.2363 ist ähnlich 1.2379 sehr gut im Vakuum härtbar.

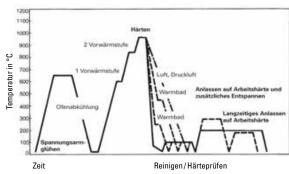
1.2363 sollte dann verwendet werden, wenn für die Anwendungsaufgabe wegen der Verschleißfestigkeit oder Durchhärtbarkeit der 1.2842 nicht ausreichend ist, der 1.2379 aber noch nicht unbedingt erforderlich oder zu wenig zäh ist.

300

400

500

Härtetemperatur: 970°C / Öl, Probequerschnitt: Vkt. 20 mm


1.2363 lässt sich gut beabeiten und nimmt Härten von bis zu 63 HRC an, durch Sekundärhärten erzielt man gute Verschleißeigenschaften. Auch größere Bauteilquerschnitte von Führungsleisten sind gut durchhärtbar, hier ist 1.2363 der ideale Werkstoff für gehärtete Führungsleisten über 40 mm Dicke.

Den Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen), VarioPlan®, in Form von einbaufertigen, gehärteten Führungsleisten nach Ihren Zeichnungen sowie als Halbzeug individuell nach Ihren Angaben.

Die Gefahr von Rissen beim Reparaturschweißen ist, wie allgemein bei Werkzeugstählen, vorhanden.

Farbkennzeichnung: Braun

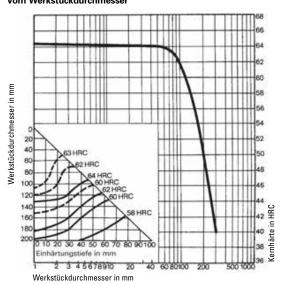
Wärmebehandlungsschema

100 Anlasstemperatur [°C] WebShop:

www.stahlnetz.de

Anlassschaubild

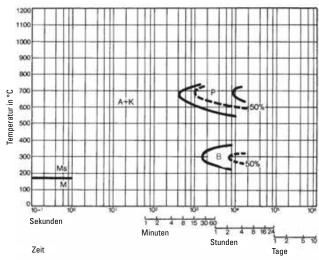
67.5 65 62,5


60 Härte [HRC] 57,5 55 52,5 50 47,5

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

1.2363 X 100 CrMoV 5

Abhängigkeit der Kernhärte und der Einhärtetiefe vom Werkstückdurchmesser

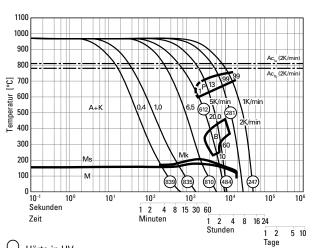


Härtetemperatur: 960°C Härtemittel: – – – Luft Chemische Zusammensetzung [%]

	С	Si	Mn	P	s	Cr	Мо	V
max.	1,05	0,4	0,8	0,03	0,03	5,5	1,2	0,35
min.	0,95	0,1	0,4			4,8	0,9	0,15

Isothermisches ZTU-Schaubild

Austenitisierungstemperatur: 960 °C, Haltedauer: 15 Minuten



								_
	С	Si	Mn	P	S	Cr	Мо	V
max.	1,05	0,4	0,8	0,03	0,03	5,5	1,2	0,35
min.	0,95	0,1	0,4			4,8	0,9	0,15

ZTU-Schaubild für kontinuierliche Abkühlung

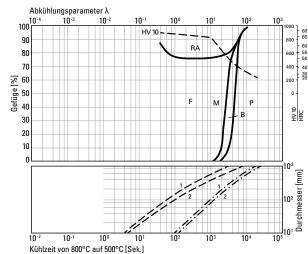
Austenitisierungstemperatur: 960°C, Haltedauer: 15 Minuten

O Härte in HV

1...99 Gefügeanteile in %

0,4 . . . 20,0 Abkühlungsparameter,

d. h. Abkühlungsdauer von 800-500 °C in s x 10^{-2}


5 . . . 1K/min Abkühlungsgeschwindigkeit

in K/min im Bereich von 800-500°C Mk.....Korngrenzenmartensit

B......Bainit

WebShop: www.stahlnetz.de

Gefügemengenschaubild

--- Ölabkühlung

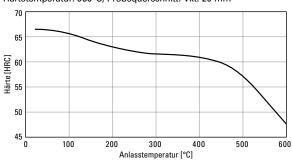
- • - Luftabkühlung 1 Werkstückrand

2 Werkstückzentrum

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

1.2436 X 210 CrW 12

Kaltarbeitswerkzeugstahl zur Herstellung von Schnitt-, Biege-, Pressund Prägewerkzeugen, Stempeln, Abkantschienen und Messern.


Aufgrund des hohen Kohlenstoffgehaltes eignet sich 1.2436 besonders gut für verschleißfeste Anwendungen.

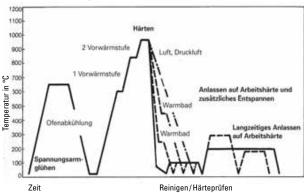
Es handelt sich bei 1.2436 um einen ledeburitischen 12%igen Chromstahl, der noch mit einfachen Mitteln zu härten ist.

Die mechanische Bearbeitbarkeit ist im Allgemeinen problemlos, verbesserte Bearbeitbarkeit in gehärtetem Zustand bieten 1.2379 und vor allem TENASTEEL®® sowie Daido DCMX®.

Anlassschaubild

Härtetemperatur: 950°C, Probequerschnitt: Vkt. 20 mm

Chemische Zusammensetzung [%]

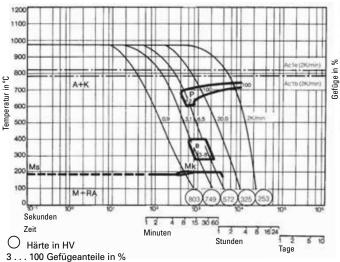

	С	Si	IVIn	Cr	W
max.	2,3	0,4	0,6	13,0	0,8
min.	2,0	0,1	0,3	11,0	0,6

Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen) und als Rohmaterialzuschnitt.

1.2436 erhalten Sie bei uns auch individuell nach Ihren Angaben als fertig bearbeitetes Zeichnungsteil.

Farbkennzeichnung: Grün

Wärmebehandlungsschema



	С	Si	Mn	Cr	W
max.	2,3	0,4	0,6	13,0	0,8
min.	2,0	0,1	0,3	11,0	0,6

ZTU-Schaubild für kontinuierliche Abkühlung

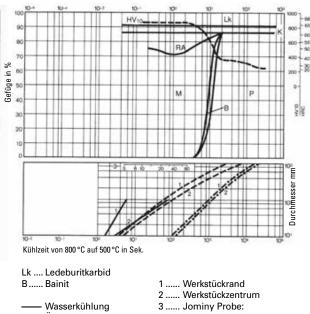
Austenitisierungstemperatur: 980 °C, Haltedauer: 30 Minuten

0,9 . . . 20,0 Abkühlungsparameter,

d. h. Abkühlungsdauer von 800-500°C in s x 10⁻²

2K/minsAbkühlungsgeschwindigkeit in K/min im Bereich von 800-500°C

Mk Korngrenzenmartensit


B......Bainit

1.2436

WebShop: www.stahlnetz.de

Gefügemengenschaubild

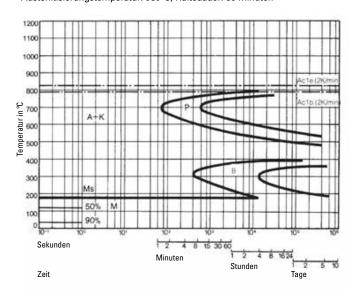
Abkühlungsparameter λ

Wasserkühlung

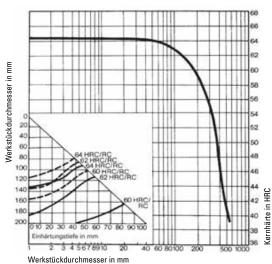
--- Ölabkühlung - • - Luftabkühlung

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Abstand von der Stirnfläche



1.2436 X 210 CrW 12


Chemische Zusammensetzung [%]						
	С	Si	Mn	Cr	W	
nax.	2,3	0,4	0,6	13,0	0,8	
nin.	2,0	0,1	0,3	11,0	0,6	

Isothermisches ZTU-Schaubild

Austenitisierungstemperatur: 980°C, Haltedauer: 30 Minuten

Abhängigkeit der Kernhärte und der Einhärtetiefe vom Werkstückdurchmesser

Härtetemperatur: 950°C Härtemittel:

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

WebShop: www.stahlnetz.de

	С	Si	Mn	P	s	Cr	Мо	V
max.	1,60	0,6	0,6	0,03	0,03	13,0	1,0	1,0
min.	1,45	0,1	0,2			11,0	0,7	0,7

Kaltarbeitswerkzeugstahl zur Herstellung von maßbeständigen Hochleistungsschnittwerkzeugen mit guter Zähigkeit und höchster Verschleißhärte.

1.2379 ist ein ledeburitischer 12%iger Chromstahl, der eine sehr hochwertige Wärmebehandlung erfordert. Die Härtetemperatur liegt über 1000°C.

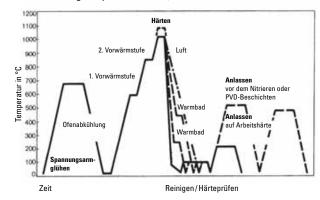
In gehärtetem Zustand ist dieser Werkstoff aufgrund seiner Verschleißfestigkeit mit geeigneten Werkzeugen gut zerspanbar.

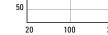
Sekundärhärten

Anlasstemperatur

mit hoher

Anlasstemperatur [°C]


Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen), EcoPlan®, EroBlock® geglüht oder gehärtet, VarioPlan®, VarioRond® und als Rohmaterialzuschnitt.


1.2379 erhalten Sie bei uns auch individuell nach Ihren Angaben als Maschinenbauteil oder fertig wärmebehandelte Führungsleiste sowie als Maschinenmesser.

Farbkennzeichnung: Schwarz

Wärmebehandlungsschema

Austenitisierungstemperatur: 1020°C, Haltedauer: 30 Minuten

Anlassschaubild

55

1.2379

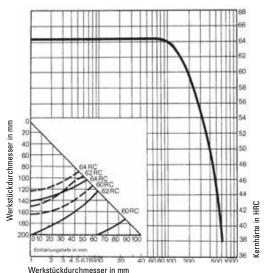
WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Chemische Zusammensetzung [%]

Cr

1.0


13.0

1.2379 X 153 CrMoV 12

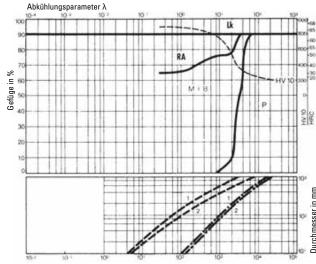
max. 1,60 0,6 0,6 0,03 min. 1,45 0,1 0,2

Si Mn

Abhängigkeit der Kernhärte und der Einhärtetiefe vom Werkstückdurchmesser

Härtetemperatur: 1030°C Härtemittel: — Öl – – – Luft

Isothermisches ZTU-Schaubild


	С	Si	Mn	P	S	Cr	Мо	V
max.	1,60	0,6	0,6	0,03	0,03	13,0	1,0	1,0
min.	1,45	0,1	0,2			11,0	0,7	0,7

ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 1080°C, Haltedauer: 30 Minuten

Gefügemengenschaubild

Kühlzeit von 800 °C auf 500 °C in Sek

LkLedeburitkarbid

RARestaustenit

B.....Bainit

.....Perlit

.....Karbid

2 . . . 100 Gefügeanteile in %

1.2379

0,40 . . . 59,8 Abkühlungsparameter,

d. h. Abkühlungsdauer von 800–500 °C in s x 10^{-2}

2...1K/min Abkühlungsgeschwindigkeit in K/min im Bereich von 800–500°C

Ms'-Ms Bereich der Korngrenzenmartensitbildung

KgM Korngrenzenmartensit

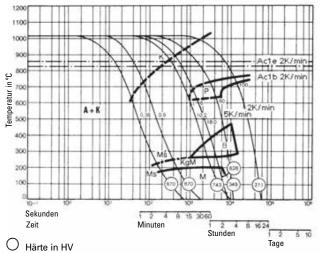
WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

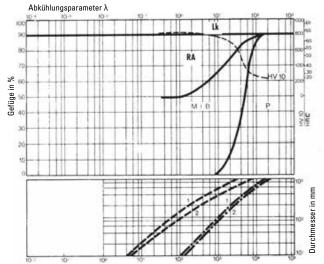
1.2379 X 153 CrMoV 12

| Chemische Zusammensetzung [%]
C	Si	Mn	P	S	Cr	Mo	V	
max.	1,60	0,6	0,6	0,03	0,03	13,0	1,0	1,0
min.	1,45	0,1	0,2	11,0	0,7	0,7		

--- Ölabkühlung


- • - Luftabkühlung

.... Werkstückrand


Werkstückzentrum

ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 1020°C, Haltedauer: 30 Minuten

Gefügemengenschaubild

Kühlzeit von 800 °C auf 500 °C in Sek

1 . . . 100 Gefügeanteile in %

0,38 . . . 18 Abkühlungsparameter,

d. h. Abkühlungsdauer von $800-500\,^{\circ}\text{C}$ in s x 10^{-2}

5 . . . 2K/min Abkühlungsgeschwindigkeit

in K/min im Bereich von 800–500°C Ms'-Ms Bereich der Korngrenzenmartensitbildung

KgM Korngrenzenmartensit

LkLedeburitkarbid RARestaustenit

B.....Bainit
P.....Perlit
K....Karbid

--- Ölabkühlung
--- Luftabkühlung

1 Werkstückrand 2 Werkstückzentrum

de Telefon: +49(0)36844/

TENASTEEL®® ist ein Kaltarbeitsstahl, der hohe Druckfestigkeit mit überragender Zähigkeit kombiniert. Er zeichnet sich durch hohe Warmfestigkeit und gute Bearbeitbarkeit im Lieferzustand aus. Dieser Werkstoff wird weichgeglüht mit einer Härte von max. 250 HB geliefert.

Er wurde speziell konzipiert, um den Werkstoff 1.2379 / X 153 CrMoV 12 zu ersetzen, der in diesem Anwendungsbereich weit verbreitet, aber mitunter bruchbempfindlich ist. TENASTEEL® löst viele Standzeitprobleme, insbesondere bei Schneidenausbrüchen oder Rissen an 1.2379. Durch die Legierungslage und die geeignete Wärmebehandlung ist TENASTEEL® besonders für Oberflächenbeschichtungen geeignet.

TENASTEEL

Noch ausführlichere Informationen zu Metallurgie, Wärmebehandlung und Anwendung von TENASTEEL® finden Sie im TENASTEEL® -Handbuch, online unter www.stahlnetz.de/downloads.

TENASTEEL® ist ein Markenprodukt des französischen Herstellers Industeel. Gebrüder Recknagel vertreibt TENASTEEL® exklusiv in Deutschland.

- ® Eingetragenes Warenzeichen von Industeel
- Patentierte Sorte von Industeel

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TENASTEEL®®

Standard

Industeel: TENASTEEL®®

EURONORM: Familie der X 110 CrMoV 8

Chemische Zusammensetzung [%]

С	S max	Mn	Cr	Мо	V	Sonstige
1,00	0,005	0,35	7,50	2,60	0,30	Ti

Typische Werte gemäß dem Lastenheft 2001/06/08MJ1

Mechanische Eigenschaften

(Typische Werte)

Härte [HB] im geglühten Zustand	ì
250 HB	
max	

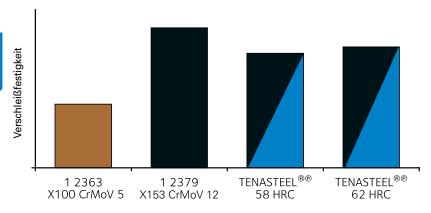
Härte [HRC] behandelter Zustand	Elastizitäts- modul [MPa]	Druck- festigkeit [MPa]	Kerbschlag- zähigkeit [J/cm²] (*)
56	205	2210	40
62	205	2 5 5 0	25

*ungekerbte Proben

Physikalische Eigenschaften

Wärmeleitfähigkeit 20°C	Mittlere Dehnungskoeffizienten [10-6 K [.] 1]						
[W·m ⁻¹ . K ⁻¹]	20-100°C	20−1200°C	20-1300°C	20-1400°C			
21	10,2	11,3	11,9	12,8			

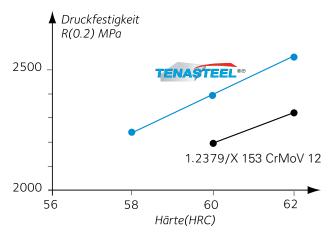
Wärmekapazität (20 °C)	Dichte (20°C)
[J.kg⁻¹ · K⁻¹]	[kg · dm ⁻³]
460	7,75



Verschleißfestigkeit

Die Verschleißfestigkeit von TENASTEEL®® liegt nahe der des Stahls 1.2379 / X 153 CrMoV 12, wobei die niedrigeren Gehalte an Kohlenstoff und Chrom durch eine Zugabe von Legierungselementen ausgeglichen werden, die feinere und härtere Karbide bilden als Chromkarbide.

Hinweis: Die Verschleißfestigkeit wird nur im Fall unbeschichteter Werkzeuge berücksichtigt. Ist eine Beschichtung vorhanden (PVD/CVD), die der Abnutzung entgegenwirkt, werden die Zähigkeit und die Druckfestigkeit des Grundmaterials berücksichtigt.


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TENASTEEL®®

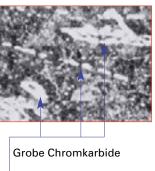
Druckfestigkeit

Metallurgische Eigenschaften

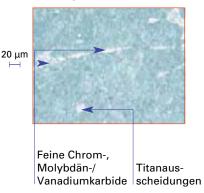
Einschlussreinheit

Die Einschlussreinheit des Stahls TENASTEEL®® wird gemäß NFA 04-106 Methode A garantiert.

	Wert	Α	В	С	D
ı	Index	≤ 1,5	≤ 1,5	≤ 1	≤ 1,5



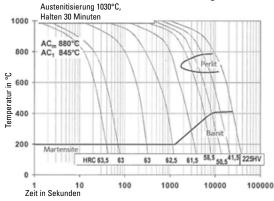
Mikrostruktur


Im Lieferzustand besteht die Mikrostruktur von TENASTEEL®® aus einer ferritischen Matrix. Kleine Primärkarbide, die sich ab der Erstarrung der Legierung bilden, sowie sehr feine Sekundärkarbide, die sich beim Glühen ergeben, sind in dieser Matrix homogen verteilt.

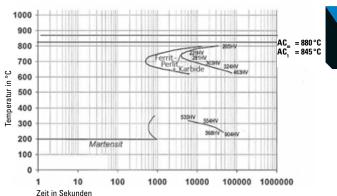
Die nachstehend abgebildeten Mikrofotografien veranschaulichen perfekt den allgemeinen Verfeinerungszustand der mit TENA-STEEL®® erzielten Struktur im Vergleich zum 1.2379 / X 153 CrMoV 12.

TENASTEEL®

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de


Dieser Unterschied in der Mikrostruktur ergibt eine deutliche Verbesserung an Zähigkeit und Bearbeitbarkeit, während die Verschleißfestigkeit dank der Gegenwart von Karbiden, die härter sind als die, die gewöhnlich im 1.2379 / X 153 CrMoV 12 vorhanden sind, auf gutem Niveau gehalten wird.

Umformpunkte


Versuchsbedingungen: Erwärmen um 150°C/Stunde bis 1.000°C und schnelles Abkühlen.

AC, ℃	AC _m °C	M _s °C
845	880	200

ZTU-Schaubild für kontinuierliche Abkühlung

Isothermisches ZTU-Schaubild

Wärmebehandlung

Austenitisierung

Erwärmen mit mäßiger Geschwindigkeit bis 750°C und Ausgleichshalten. Langsames Erwärmen bis 1.030/1.050°C, Halten ½ Std. pro 25 mm.

Hinweie

Der Heizzyklus muss unter Vakuum oder Schutzgas erfolgen, um ein Oxidieren und Entkohlen der Oberfläche zu vermeiden.

Härten

Das Abkühlen nach der Austenitisierung erfolgt vorzugsweise unter Gasdruck, anderenfalls in einem Salzbad oder einem Wirbelbett bei Temperaturen zwischen 250 und 350°C.

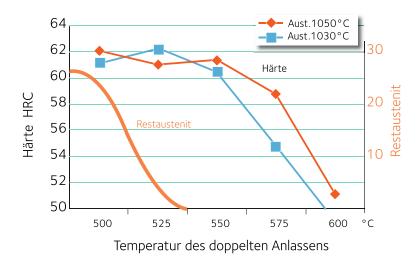
Das Ölhärten ist Werkzeugen mit einfacher Geometrie vorzubehalten, wenn die anderen erwähnten Methoden nicht ausreichen, um eine ausreichende Abkühlgeschwindigkeit sicherzustellen (siehe ZTU-Schaubilder).

Das Anlassen muss durchgeführt werden, sobald die Temperatur des Werkzeugs 40 bis 60°C erreicht, außer im Fall einer Tiefkühlbehandlung (siehe Absatz "Tiefkühlbehandlung", Seite 176).

Anlassen

Je nach Anwendung erzielt man die angestrebte Endhärte durch Anpassen der Anlasstemperaturen, die für die Zielhärte mit den nachfolgend dargestellten Anlasskurven durchgeführt werden.

Nach dem ersten Anlassen erfolgt ein fast identisches zweites Anlassen bei einer leicht niedrigeren Temperatur, um eine völlig angelassene Endstruktur zu erzielen und die maßliche Beständigkeit des behandelten Teils sicherzustellen.



Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TENASTEEL®®

Die Grafik zeigt, dass eine hohe Austenitisierungstemperatur (1.050°C) auch nach einem Anlassen bei 575°C zu einer Härte von 58 HRC führt.

TENASTEEL® erlaubt hohe Anlasstemperaturen. Nach einem Anlassen bei hoher Temperatur (z. B. 550°C) ist der Gehalt an Restaustenit sehr gering. Die so behandelten Teile weisen im Gebrauch sehr gute maßliche Stabilität auf.

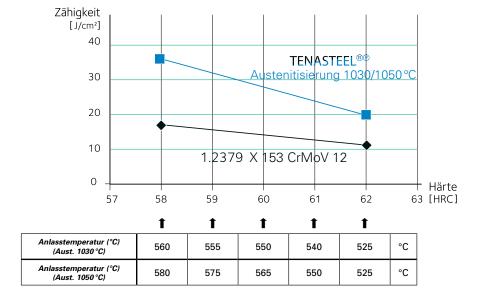
Umgekehrt können an Teilen, die unter 500°C angelassen wurden (20% Restaustenit), nach der Behandlung noch Maßänderungen vorkommen.

Das bei der Wärmebehandlung angestrebte Härteniveau wirkt sich stark auf die Zähigkeit aus. Je nach den Gebrauchsbedingungen (Druck, Stöße, mechanische Eigenschaften des umgeformten Stahls), aber auch je nach der eventuell vorgesehenen Oberflächenbehandlung und Beschichtung des Werkzeugs ist es möglich, den jeweils besten Kompromiss zwischen Verschleißfestigkeit und Zähigkeit mittels Härte- und Anlasstemperatur einzustellen.

TENASTEEL

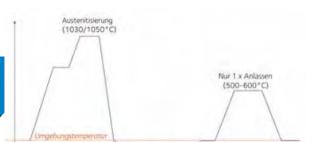
Das folgende Diagramm kann bei der Auswahl helfen. In jedem Fall bietet TENASTEEL® einen besseren Härte-/Zähigkeitskompromiss als 1.2379 / X 153 CrMoV 12.

In Zweifelsfällen sprechen Sie uns bitte an. Wir beraten Sie gerne.



Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

TENASTEEL®®



Tiefkühlbehandlung

Der in dem Stahl nach dem Härten verbleibende Restaustenit wird durch die Kältebehandlung sicher auf nahezu Null reduziert. Maßänderungen auf Grund späterer Restaustenitumwandlungen werden dadurch vermieden. Bei Bedarf kann die Tiefkühlbehandlung wie folgt vorgenommen werden:

Tiefkühlbehandlungszyklus

Anlasskurve nach Tiefkühlbehandlung

Langsames Abkühle

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Oberflächenbeschichtung

Beschichtungen auf den Werkzeugen dienen, wie die Oberflächenhärtung, einer hohen Verschleißfestigkeit und einem merklichen Rückgang der Reibungskoeffizienten.

ames Aufwärmen

Diese Verfahren unterscheiden sich von den vorhergehenden durch die Tatsache, dass eine exogene Materialschicht aufgebracht wird, die nicht mit dem Basismaterial reagiert und sich wie eine zusätzliche "Haut" verhält.

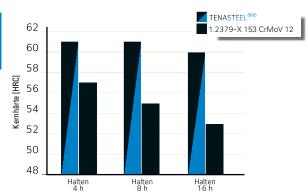
PVD: Physikalische Dampfphasenabscheidung

Diese Ablagerungstypen können bei relativ niedriger Temperatur (200 bis 500°C) erfolgen und beeinträchtigen die Härte der Unterlage nicht. Die erzielten Härten können auf einigen Mikrometern 2.000 HV erreichen.

Bitte beachten Sie, dass für eine nach dem Härten folgende PVD-Beschichtung bei über 500°C angelassen werden muss.

CVD: Chemische Dampfphasenabscheidung

Die Temperatur, die zum Aktivieren der Reaktionen der CVD Behandlung erforderlich ist, ist so hoch (800 bis 1.000°C), dass eine erneute Wärmebehandlung zum Einstellen der Härte des Teils nach dem Beschichten notwendig ist. Die Härten der Beschichtungen können 2.500 HV erreichen und sogar überschreiten.


Nitrieren

Die Nitrierbehandlung soll die Oberflächenhärte und die Verschleißfestigkeit steigern und die Reibungskoeffizienten durch Anreichern eines oder mehrerer Elemente in der Oberflächenschicht des Teils verringern.

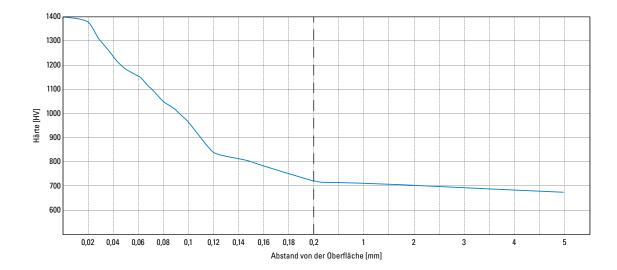
TENASTEEL® ist dank seiner hohen Härte und sehr guten Anlassbeständigkeit für das Nitrieren sehr gut geeignet.

Herkömmliches Gas- und Plasmanitrieren bei Temperaturen in der Größenordnung von 500°C bis 525°C erlauben das Erzielen einer harten Schicht in der Größenordnung von über 1.100 HV mit mehreren Mikrometer Stärke.

Bitte beachten Sie, dass für eine nach dem Härten folgende Nitrierbehandlung bei mindestens 525°C angelassen werden muss.

In der abgebildeten Grafik sieht man, dass die Kernhärte des TENASTEEL® von der Nitrierbehandlung nicht beeinträchtigt wird, während 1.2379 / X 153 CrMoV 12 unter der nitrierten Schicht einen Härteabfall von 5 bis 10 HRC erfährt.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de



TENASTEEL®®

Nitrieren

Härteverlauf für das Gasnitrieren 16 Stunden

Bearbeiten - im geglühten Zustand

Fräsen mit beschichteten Hartmetallwerkzeugen

Schnittwerte	Schruppen	Schlichten
Schnittgeschwindigkeit (v _c) – m/Min	130-190	170-210
Vorschub (F _z) – mm/Zahn	0,15-0,4	0,1-0,2
Schneidtiefe (a _p) – mm	2-5	≤ 1,5

Bohren mit HSS-Werkzeugen

	(v _c) – m/Min	Ø ≤ 10	ø 10-20		
	Schnittgeschwindigkeit (v _c) – m/Min	15	15		
ſ	Vorschub (F _z) – mm/Umdrehung	0,05-0,2	0,2-0,3		

Verglichen mit 1.2379 / X 153 CrMoV 12 gewährleistet die Feinheit der Karbide des TENASTEEL^{®®} eine um mindestens 25% erhöhte Standzeit der Werkzeuge für Bearbeitungen im geglühten Zustand und um mindestens 70% für Bearbeitungen im gehärteten Zustand.

Erodieren – Funkenerosion

TENASTEEL® eignet sich für alle Funkeneriosionsvorgänge vor und nach der Wärmebehandlung.

Wenn das Erodieren im gehärteten Zustand erfolgt, sollte unverzüglich fertig bearbeitet, die Erodierflächen poliert oder spannungsarmgeglüht werden (20°C unter der letzten Anlasstemperatur).

Schweißen

Die Reparatur oder das Auftragsschweißen von Werkzeugen aus TENASTEEL® kann unter Einhaltung einiger unerlässlicher Vorsichtsmaßnahmen bei Verwendung entsprechender Auftragswerkstoffe in Betracht gezogen werden. Für weitere Informationen senden wir Ihnen gern das TENASTEEL® -Handbuch. Sie finden es auch unter www.stahlnetz.de/downloads.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DCMX™

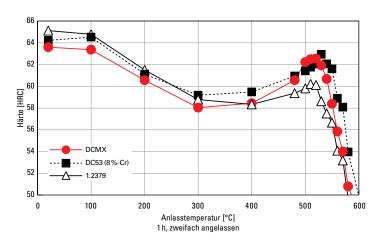
Hochzäher und verschleißfester Matrix-Kaltarbeitsstahl für das Schneiden und Umformen höherfester Bleche sowie für Maschinenmesser.

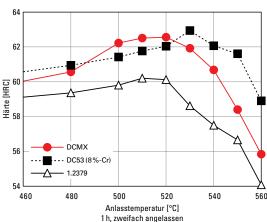
DCMX® bietet überragende Eigenschaften beim Schneiden und Umformen, als Matrix-Kaltarbeitsstahl kann man hohe Härte für hohe Verschleißfestigkeit kombinieren mit hoher Zähigkeit zur Vermeidung von Rissen oder Abplatzungen. Darüber hinaus bietet DCMX sehr guten Widerstand gegen Reibverschleiß oder die Gefahr der Ablösung von Beschichtungen.

Das isotrope Verhalten bei der Wärmebehandlung sorgt für eine einzigartige Form- und Dimensionsstabilität in allen Raumrichtungen. Das ist etwa bei Folge-Verbundwerkzeugen oder Feinschnittwerkzeugen von besonderer Bedeutung.

Die Bearbeitbarkeit wurde gegenüber gängigen 8%-Chrom-Stählen nochmals verbessert, denn diese Sonderlegierung bildet feinstverteilte Karbide aus. Mit geeigneter Wärmebehandlung, abgestimmt auf den Verwendungsfall, optimiert man die Standzeit gezielt. Vielfach ist DCMX® eine wirtschaftlichere Alternative zu teuren PM-Stählen. DCMX® ist auch in dicken Schmiedeabmessungen erhältlich.

DCMX® ist ein patentiertes Markenprodukt des japanischen Herstellers Daido Steel. Gebr. Recknagel vertreibt DCMX als lagerhaltender Alleinvertrieb für Zentraleuropa.



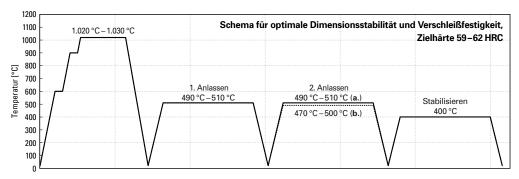


						-	
	С	Si	Mn	Cr	Мо	V	l
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2	l

Anlassbehandlung

Probe: 15 mm, kubisch Härten von 1030°C, Gasabschreckung

Hochfeste Stähle werden immer häufiger zur Gewichtsreduzierung an Kraftfahrzeugen verwendet. Daraus ergeben sich besondere Anforderungen an Werkzeugstähle in Hinblick auf Abplatzungen, Risse, Abrasiv- und Reibverschleiß. Kosteneffizienz und sichere Herstellungsverfahren des Werkzeugs sind gefragt. Dabei kommen einem optimierten Gleichgewicht zwischen Härte und Zähigkeit sowie guter Zerspanbarkeit besondere Bedeutung zu. Bisher ungelöst war die Dimensionsstabilität und Berechenbarkeit bei der Wärmebehandlung und im Dauerbetrieb. Der neu entwickelte Matrix-Kaltarbeitsstahl DCMX® unseres Technologiepartners Daido aus Japan zeigt hier außerordentliches Potential.


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DCMX™

Chemische Zusammensetzung [%						
	С	Si	Mn	Cr	Мо	V
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2

Wärmebehandlung

Härte prüfen nach dem ersten Anlassen, falls:

- a. Härte zu hoch
- -> zweites Anlassen bei gleicher Temperatur
- **b**. Härte wie gewünscht

bei 400°C, eine Stunde

-> zweites Anlassen 10-20°C niedriger Anschließend Stabilisieren

1200 Schema für optimale Zähigkeit, 1100 Zielhärte 54-57 HRC 1000 900 2. Anlassen 800 Femperatur [°C] 550 °C (e.) 700 540 °C (d.) 1. Anlassen 600

540 °C -550 °C

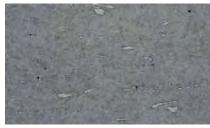
Härte prüfen nach dem ersten Anlassen, falls:

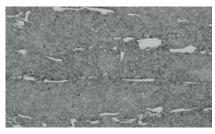
- c. Zielhärte erreicht
- -> zweites Anlassen unter 540°C
- d. Härte um 1-2 HRC zu hoch
- -> zweites Anlassen bei 540°C
- e. Härte um 3 HRC oder mehr zu hoch
 - -> zweites Anlassen bei 550°C

WebShop: www.stahlnetz.de

500

< 540 °C (c.)


	С	Si	Mn	Cr	Мо	V
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2


		Behandlungstemperaturen					
Warmumformung	Glühen	Härten	Anlassen	Stabilisierung	Geglüht	Gehärtet	
900-1.160°C	920–980°C langsame Ofenabkühlung	1.000 – 1.050 °C Abkühlung an Luft oder Gas	Niedrig: 150-200°C Hoch: 480-560°C mind. 2x	400°C für mind. 1h	≤ 235 HB	56-62 HRC	

Gefügestruktur

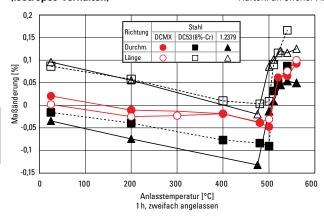
Daido DCMX® zeigt eine besonders feine Mikrostruktur, nahezu frei von groben Primärkarbiden.

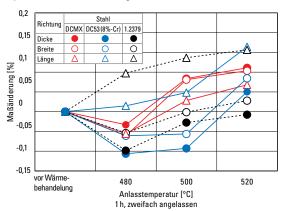
DCMX Daido-DC53 (8%-Cr-Stahl) 1.237

Konventionelle Stähle zeigen langgestreckte Primärkarbide, der Unterschied der Volumenänderung beim Härten in Längs- und Querrichtung wird dadurch verursacht, ein hoher Gehalt verstärkt den Effekt. DCMX wurde entwickelt, um diesem Problem zu begegnen. Hier werden Primärkarbide entscheidend reduziert. In anderen Worten, es wurde ein Matrix-Kaltarbeitsstahl entwickelt, der kaum große Primärkarbide zeigt. Das resultiert neben einer optimalen Maßstabilität auch in deutlich verbesserter Zähigkeit und Bearbeitbarkeit.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DCMX™

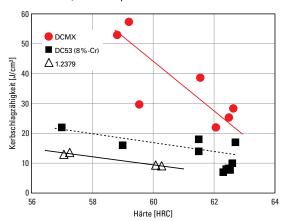

	Chemische Zusammensetzung [%]					
	С	Si	Mn	Cr	Mo	V
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2


Heute werden größere Stanz- und Biegewerkzeuge segmentiert, um den bekannten Problemen mit der Dimensionsänderung beim Härten zu begegnen. Übliche Stähle wie 1.2379 / X 153 CrMoV 12 und auch bisher bekannte 8-%-Cr-Werkzeugstähle zeigen beim Härten anisotropes Verhalten in den drei Raumrichtungen. Aufwendige Nachbearbeitung und Aufteilung der Funktionsteile in kleinere Segmente werden notwendig.

Der geringste Unterschied in Hinblick auf die Maßänderungen in den Raumrichtungen zeigt sich bei der höchsten Härte von 62 HRC durch Anlassen bei 500°C. Dimensionsänderung über die Zeit ist ein bekanntes Phänomen bei hohen Anlasstemperaturen. Eine Stabilisierungsbehandlung bei 400°C nach dem Anlassen schafft hier wirksam Abhilfe.

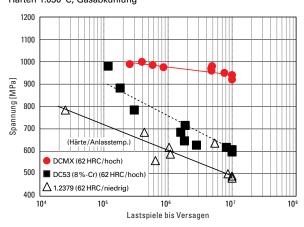
Form und Dimensionsstabilität (isotropes Verhalten)

Härten: an offener Atmosphäre, 1030°C, Ölabkühlung


WebShop: www.stahlnetz.de RECKNAGEL*

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

DCMX zeigt eine hohe Kerbschlagzähigkeit, nicht nur im Vergleich zu 1.2379 / X 153 CrMoV 12, sondern sogar gegenüber 8-%-Cr-Stählen wie DC53 oder TENASTEEL®. Dies führt zu spürbar geringerer Neigung zu Abplatzungen oder Rissen. Auch die Dauerfestigkeitseigenschaften sind herausragend.


Kerbschlagzähigkeit

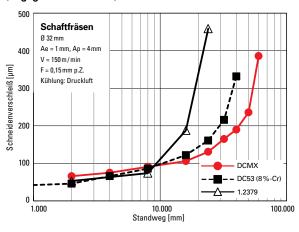
U-Probe, R=1mm, Längsrichtung, Härten 1.030°C, Anlasstemperatur hoch

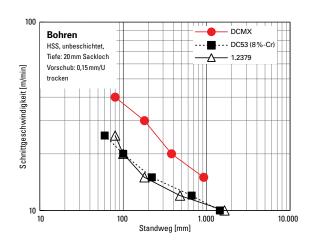
Dauerfestigkeit/Materialermüdung

Wöhlerversuch (Längsrichtung), Härten 1.030°C, Gasabkühlung

WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

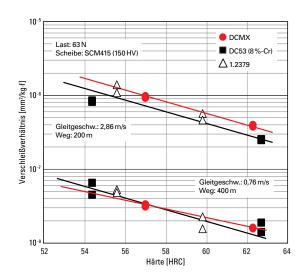



Daido DCMX™

	Chemische Zusammensetzung [%]					
	С	Si	Mn	Cr	Мо	V
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2

Sowohl in ungehärtetem, als auch insbesondere in gehärtetem Zustand ist die Bearbeitbarkeit unvergleichlich gut, verbunden mit längerer Werkzeugstandzeit oder der Möglichkeit schnellerer Bearbeitung.

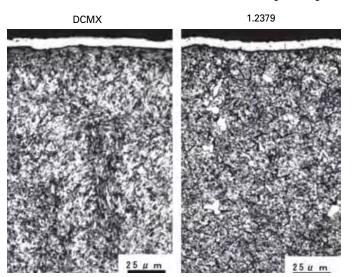
Bearbeitbarkeit im Vergleich (in geglühtem Zustand)



	С	Si	Mn	Cr	Мо	V
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2

Verschleißfestigkeit (Stift-Scheibe-Versuch)

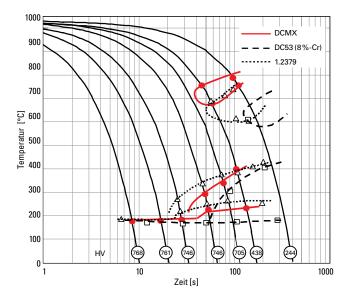
Die Verschleißfestigkeit ist ein entscheidendes Kriterium für die Stahlauswahl. Es ist wichtig, die verschiedenen Verschleißformen zu unterscheiden, um eine geeignete Auswahl treffen zu können. Adhäsivverschleiß, wie er etwa bei Biege- und Tiefziehoperationen auftritt, kann mit Hilfe des Stift-Scheibe-Versuchs beurteilt werden. Hier zeigt sich, dass die Härte ausschlaggebend für das Verschleißverhalten ist, auch bei 62 HRC zeigt DCMX hervorragende Zähigkeit, dadurch hebt sich dieser neue Werkstoff vom Üblichen deutlich ab. Abrasivverschleiß kann mit dem Reibrad-Sand-Test beurteilt werden. Obgleich DCMX durch die sehr feine Karbidverteilung keine groben Primärkarbide aufweist, schlägt sich dieser Werkstoff im Vergleich recht ordentlich. Beide Prüfverfahren zeigen, dass mit DCMX ein optimal ausgewogener Werkstoff zur Verbesserung der Standzeit vorliegt.


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DCMXTM

Beschichtung

Thermoreaktive Diffusionsschicht: DOWA Thermo Engineering.


In Japan werden mehr und mehr Stanz- und Biegewerkzeuge PVDbeschichtet, um die Standzeit zu optimieren. DCMX® ist auch hierfür hervorragend geeignet. Er bietet eine sehr gute Haftung, auch durch höhere Grundhärte im Vergleich zu 1.2379 / X 153 CrMoV 12.

Chemische Zusammensetzung [%]

	С	Si	Mn	Cr	Mo	<i>V</i>	
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2	ĺ

ZTU-Schaubild

Härtetemperatur 1.030°C x 10 min

Wärmeausdehnungskoeffizient [10-6/K]								
20-100°C	20-200°C	20-300°C	20-400°C	20-500°C	20-600°C	20-700°C		
13,3	13,7	14,0	14,4	14,7	14,9	14,9		

Wärmeleitfähigkeit [W/mK]							
RT	100°C	200°C	300°C	400°C	500°C		
17,1	18,8	20,9	22,6	24,0	25,7		

Spezifische Wärme [J/kgK]							
RT	100°C	200°C	300°C	400°C	500°C		
507	535	570	611	654	719		

E-Modul = 202 GPa, Spez. Gewicht = 7,67 kg/dm³, Probe gehärtet bei 1.030 °C, Luftabkühlung, 2x angelassen bei 500 °C In gewissen Fällen wird **Reparaturschweißen** notwendig. Hierfür bietet DCMX vergleichsweise gute Voraussetzungen. Vorwärmung bei 350°C und nach dem Schweißen Wärmebehandlung bei 400°C führt zu gleichmäßiger Härteverteilung und Sicherheit gegen Schweißrisse.

DCMX wird erfolgreich auch für größere automobiltypische Werkzeuge verwendet. Kunden schätzen dabei die Vorhersagbarkeit und Zuverlässigkeit der Dimensionsstabilität sowie insbesondere die teils mehrfach höhere Lebensdauer der Werkzeuge.

Zusammenfassend kann man festhalten, dass ein Matrix-Kaltarbeitsstahl, der sich auf die Reduzierung der Primärkarbide stützt, drei Vorteile in sich vereinigt: fast vollständige Vermeidung von Problemen durch Dimensionsänderung beim Härten, deutlich verbesserte Bearbeitbarkeit sowie hohe Zähigkeit und Bruchsicherheit.

(zusammenfassende Übersetzung eines Fachartikels von Takayuki Shimizu, Koichiro Inoue, Atsushi Sekiya aus "Denki-Seiko (Electric Furnace Steel), Ausgabe 81 (2010), Nr. 1, Seite 53 ff.)

Angegeben sind stets repräsentative technische Werte auf Grundlage unserer Untersuchungen. Sie stellen, wenn nicht anders angegeben, keine Garantien dar. Bitte lassen Sie sich im Einzelfall beraten.

WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DCMX™

Chemische Zusammensetzung [%]

	С	Si	Mn	Cr	Мо	V
Richtanalyse Gew%	0,7	2,0	1,0	6,8	1,4	0,2

Werkstoffvergleich

Eige	nschaft	DCMX	Daido-8-%-Cr-Stahl	1.2379
	Niedrig (200°C)	61 HRC	61 HRC	61 HRC
Anlass- temperatur	Hoch (500°C)	62 HRC	60 HRC	58 HRC
temperatur	Hoch (520 °C) 60 HRC	60 HRC	62 HRC	58 HRC
Isotropie		0	0	Δ
Volumenänderung über Zeit *1		0(0)	Δ(Ο)	0(0)
Härtbarkeit		0	0	0
Zähigkeit		0	0	Δ
Materialermüdung	g	0	0	Δ
Bearbeitbarkeit		0	0	Δ
Verschleißfestigke	eit (Reibverschleiß)	0	0	0
Verschleißfestigke	eit (abrasiv)	Δ	0	0
Drahterosion *2		0	0	0
PVD-Beschichtung *2		0	0	0

- *1 Vergleich der Volumenänderung in Stabilisiertem Zustand: Δ : Durchschnittlich, O: Gut, \odot : Hervorragend
- *2 Vergleich des Härteverlusts durch Anlassen bei 520°C für Erodieren und PVD Beschichtung

Daido DRM1 ist ein hochzäher Matrix-Warmarbeitsschnellstahl. Dieser Werkstoff übertrifft die bekannten Warmarbeitsstähle deutlich, er vereinigt exzellente Brandrissbeständigkeit, hohe Zähigkeit und hohe Härte. Die gute Anlassbeständigkeit sichert die hohe Verschleißhärte auch nach vielen Zyklen. Eine feine Mikrostruktur bewirkt eine bessere Zähigkeit, als man sie von konventionellen Schnellstählen

DRM1 ist ideal für Gesenke, Metall-Druckgussformen und Warm-Schnittwerkzeuge.

DRM1 ist ein Markenprodukt des japanischen Herstellers Daido Steel. Gebr. Recknagel vertreibt DRM1 als lagerhaltender Alleinvertrieb für Zentraleuropa.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DRM™1

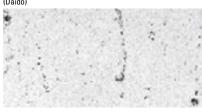
Chemische Zusammensetzung [%]

	С	Si	Mn	Cr	Мо	W	V	Со
Richtanalyse Gew9	0,5	0,2	0,5	4,2	1,0	3,0	1,3	2,0

	Beha	andlungstemperat	aturen Härte		
Warmumformung Glühen		Härten	Anlassen	Geglüht	Gehärtet
(bitte anfragen)	800–880°C langsame Abkühlung	1.100-1.140°C Abkühlung in Öl, Gas oder Salzbad	550-620°C min. 2x Anlassen, Luftabkühlung	≤ 235 HB	56-58 HRC

	Physikalische Eigenschaften									
Wärmeausdehnungs- koeffizient	20-100°C	20-200°C	20-300°C	20-400°C	20-500°C	20-600°C	20-700°C	20-800°C		
[10 ⁻⁶ /K]	11,2	11,4	11,7	11,9	12,2	12,4	12,7	12,3		
Wärmeleitfähigkeit	25°C	200°C	300°C	400°C	500°C	600°C	700°C			
[W/mK]	22,4	26,3	27,3	28,6	28,4	29,1	28,8			
Spezifische Wärme	25°C	200°C	300°C	400°C	500°C	600°C	700°C			
. [J/kgK]	413	487	519	562	616	705	840			

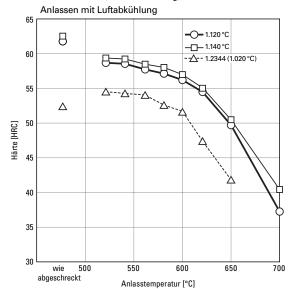
E-Modul = 210 GPa, Probe gehärtet bei 1.140 °C, 2x angelassen bei 560 °C.


Mikrostruktur

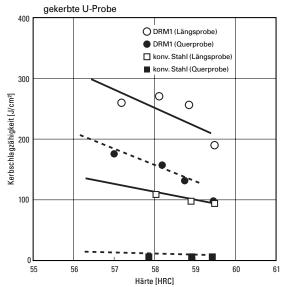
DRM1

(in der Mitte eines Stabes Ø 100 mm)

Konventioneller Warmarbeitsstahl (Daido)



	Chemische Zusammensetzung [70							
	С	Si	Mn	Cr	Мо	W	V	Co
Richtanalyse Gew%	0,5	0,2	0,5	4,2	1,0	3,0	1,3	2,0

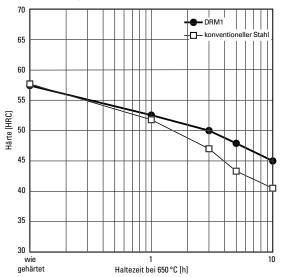

Anlassbehandlung

Probe: Vierkant 15 mm, Ölabschreckung,

Kerbschlagzähigkeit

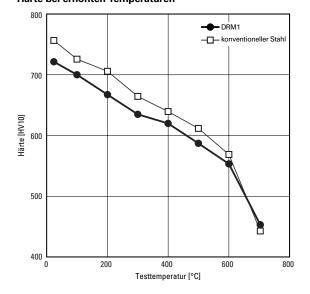
Proben: entnommen aus Stabstahl, im Zentrum des Ø 100 mm,

	Wärmebehandlung					
	Härten	Anlassen				
DRM1	1.140°C, ölgehärtet	540-600°C, zweifach angelassen				
Konventioneller Stahl	1.120°C, ölgehärtet	540-600°C, zweifach angelasser				


Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DRMTM1

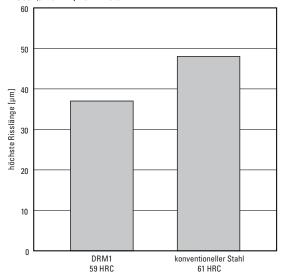

Anlassbeständigkeit über Zeit

	Wärmebehandlung						
	Härten Anlassen						
DRM1	1.140 °C, ölgehärtet 600 °C, zweifach angelass						
Konventioneller Stahl	1.120°C, ölgehärtet 610°C, zweifach angelas						

Chemische Zusammensetzung [%] Si Mn Cr Mo W Richtanalyse Gew.-% 0.5 0,2 0.5

Härte bei erhöhten Temperaturen

	Wärmebehandlung						
	Härten Anlassen						
DRM1	1.140°C, ölgehärtet 560°C, zweifach angela						
Konventioneller Stahl	1.140°C, ölgehärtet	560°C, zweifach angelassen					



Chemisons Zasammensetzang (7)								
	С	Si	Mn	Cr	Мо	W	V	Co
Richtanalyse Gew%	0,5	0,2	0,5	4,2	1,0	3,0	1,3	2,0

Brandrissbeständigkeit

Probe: Ø 15mm, 10mm dick

Proben	Proben: aus dem Zentrum eines Stabstahls Ø 100 mm								
1600									
			DRM1 (59 HRC	2)					
			konventionelle	er Stahl					
			_ Konventionent	1					
1400									
1200									
Spannung [MPa] 0001									
≥			•						
를 1000	_								
n n	_	F. F.							
Spa			•	□					
				5 →					
800				#					
600									
000									
400									

Dauerfestigkeit/Materialermüdung

	Wärmebehandlung					
	Härten Anlassen					
DRM1	1.140°C, ölgehärtet	560°C, zweifach angelassen				
Konventioneller Stahl	1.140°C, ölgehärtet 560°C, zweifach angelassen					
Testmethode	1.000 x induktiv erwärmen auf 700 °C und abkühlen auf 20 °C					

	Wärm	ebehandlung					
	Härten Anlassen						
DRM1	1.140°C, ölgehärtet	560°C, zweifach angelassen					
Konventioneller Stahl	1.140 °C, ölgehärtet 560 °C, zweifach angelasser						
Testmethode	Wöhlerversuch bei Raumtemperatur						

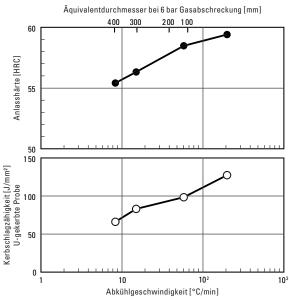
10⁶

Lastspiele bis Versagen

WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

104

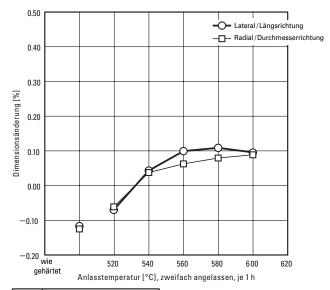

10⁸

107

Daido DRM™1

Härtbarkeit

Probe: Rundstahl Ø 100 mm

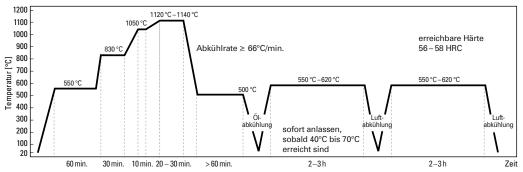

	Wärmebehandlung							
	Härten	Anlassen						
DRM1	1.140°C, 200°C/min entsprechend Ölhärtung	560°C, zweifach angelassen						

Dimensionsänderung beim Härten

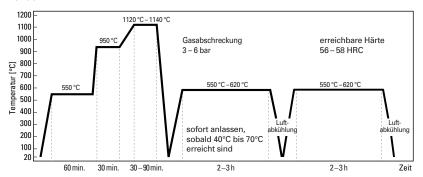
Proben: Stabstahl Ø 100 mm x 60 mm Länge

105

	Wärmebehandlung Härten
DRM1	1.140°C, ölgehärtet



Daido DRMTM1


Härteverfahren

Si Mn Cr Mo W

Salzbad

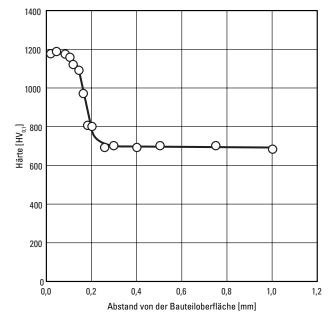
Vakuum

Dicke [mm]	Salzbad Haltzeiten [min]	Vakuum Haltzeiten [min]
bis 12	8-10	
bis 25	10-15	20-30
bis 37,5	15-20	pro 25 mm Dicke
bis 50	20-25	
bis 100	30-40	10-20
über 100	30-40	pro 25 mm Dicke

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DRMTM1

Nitrieren


Beispiel der Mikrostruktur einer nitrierten Oberfläche nach dem PS-Verfahren von Daido Amistar.

Angegeben sind stets repräsentative technische Werte auf Grundlage unserer Untersuchungen. Sie stellen, wenn nicht anders angegeben, keine Garantien dar. Bitte lassen Sie sich im Einzelfall beraten.

Chemische Zusammensetzung [%]

	С	Si	Mn	Cr	Мо	W	V	Co
Richtanalyse Gew%	0,5	0,2	0,5	4,2	1,0	3,0	1,3	2,0

Härteverlauf nach dem Nitrieren

Die Oberflächenhärte erreicht hier 1.200 HV mit NHD = 0,2 mm.

Daido DRM3 ist ein exzellent härtbarer und hochzäher Matrix-Kaltarbeitsschnellstahl. Die feine Karbidverteilung gewährleistet Zähigkeit und Dauerfestigkeit auf dem Niveau von 1.3343. Die Härte erreicht bis zu 66 HRC.

DRM3 ist ideal für Schnitt-, Stanz- und Biegewerkzeuge, Walzen sowie Gesenke, Präge- und Umformwerkzeuge.

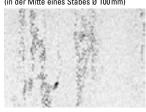
DRM3 ist ein Markenprodukt des japanischen Herstellers Daido Steel. Gebr. Recknagel vertreibt DRM3 als lagerhaltender Alleinvertrieb für Zentraleuropa.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

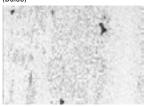
Daido DRM™3

Chemische Zusammensetzung [%]

	С	Si	Mn	Cr	Мо	W	V
Richtanalyse Gew%	0,8	0,7	0,3	5,4	4,5	1,0	1,2


	Beha	andlungstemperat	Hä	rte	
Warmumformung	Glühen	Härten	Anlassen	Geglüht	Gehärtet
(bitte anfragen)	800-880°C langsame Abkühlung (≤ 20°C/min)	1.100-1.140°C Abkühlung in Öl, Gas oder Salzbad	550-620°C min. 2x Anlassen, Luftabkühlung	≤ 235 HB	62-66 HRC

	Physikalische Eigenschaften									
Wärmeausdehnungs- koeffizient	20-100°C	20-200°C	20-300°C	20-400°C	20-500°C	20-600°C				
koeπizient [10 ⁻⁶ /K]	11,1	11,5	11,9	12,2	12,4	12,7				
Wärmeleitfähigkeit	25°C	200°C	300°C	400°C	500°C	600°C				
[W/mK]	18	21,5	23,1	24,4	25,2	26,0				
Spezifische Wärme	25°C	200°C	300°C	400°C	500°C	600°C				
[J/kgK]	424	480	520	560	698	830				

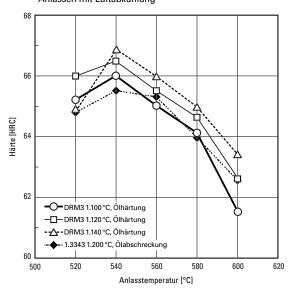

E-Modul = 210 GPa, Probe gehärtet bei 1.140 °C, 2x angelassen bei 560 °C.

Mikrostruktur

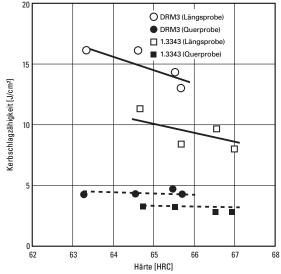
DRM3 (in der Mitte eines Stabes Ø 100 mm)

Konventioneller Kaltarbeitsstahl (Daido)

→ 50µm



	С	Si	Mn	Cr	Мо	W	V
Richtanalyse Gew%	0.8	0.7	0,3	5.4	4.5	1.0	1.2

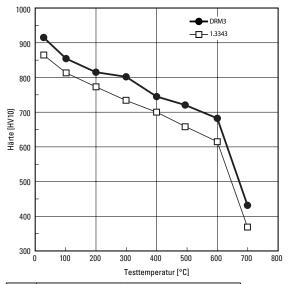

Anlassbehandlung

Probe: Vierkant 15 mm, Ölabschreckung, Anlassen mit Luftabkühlung

Kerbschlagzähigkeit

Proben: entnommen aus Stabstahl, im Zentrum des Ø 100 mm, gekerbte U-Probe

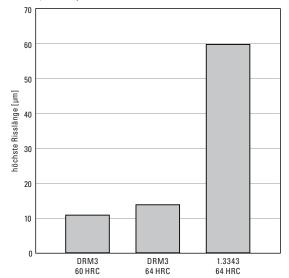
	Wärmebehandlung					
	Härten Anlassen					
DRM3	1.140°C, ölgehärtet	540-600°C, zweifach angelasser				
1.3343	1.210°C, ölgehärtet	540-600°C, zweifach angelassen				



Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido DRMTM3

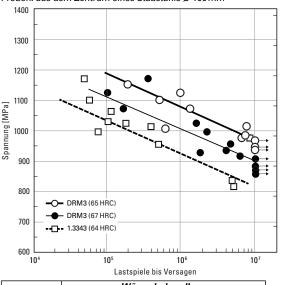
Härte bei erhöhten Temperaturen


	Wärmebehandlung						
	Härten Anlassen						
DRM3	1.140°C, ölgehärtet	560 °C, zweifach angelasser					
1.3343	1.200°C, ölgehärtet	580°C, zweifach angelassen					

Chemische Zusammensetzung [%] Si Mn Cr Mo W

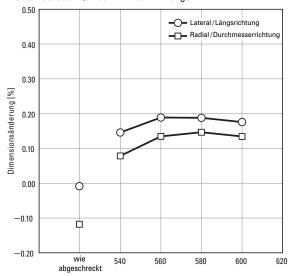
Richtanalyse Gew.-% 0,8 0.7 0.3

Brandrissbeständigkeit


Probe: Ø 15 mm, 10 mm dick

	Wärmebehandlung						
	Härten Anlassen						
DRM3	1.120°C, ölgehärtet	560-620°C, zweifach angelassen					
1.3343	1.200°C, ölgehärtet	560°C, zweifach angelassen					
Testmethode	1.000 x induktiv erwärmen auf 600 °C und abkühlen auf 20 °C						

Dauerfestigkeit/Materialermüdung


Proben: aus dem Zentrum eines Stabstahls Ø 100 mm

	Wärmebehandlung					
	Härten Anlassen					
DRM3 (65 HRC)	1.100°C, ölgehärtet	560°C, zweifach angelassen				
DRM3 (67 HRC)	1.140°C, ölgehärtet	550°C, zweifach angelassen				
1.3343	1.140 °C, ölgehärtet 560 °C, zweifach angelass					
Testmethode	Wöhlerversuch bei Raumtemperatur					

Dimensionsänderung beim Härten

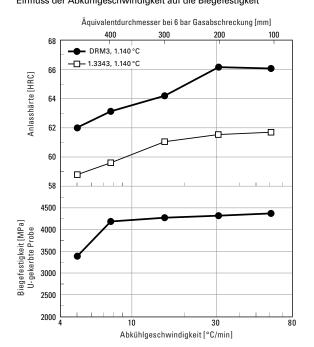
Proben: Stabstahl Ø 100 mm x 60 mm Länge

Anlasstemperatur [°C], zweifach angelassen, je 1 h

	Wärmebehandlung Härten
DRM3	1.140°C, im Salzbad gehärtet

WebShop: www.stahlnetz.de

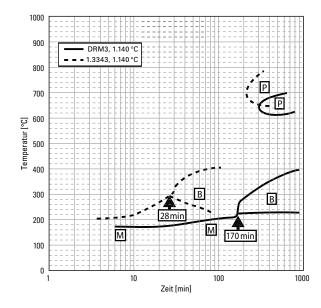
Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de


Chemische Zusammensetzung [%]

Мо

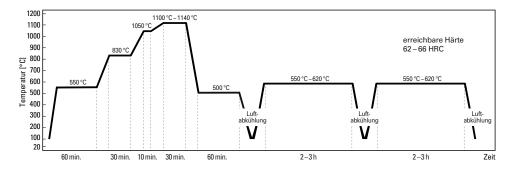
Mn Cr

Daido DRM™3


Härtbarkeit Einfluss der Abkühlgeschwindigkeit auf die Biegefestigkeit

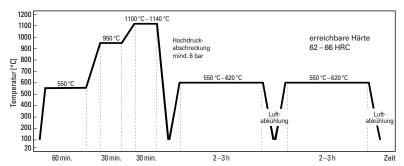
ZTU-Schaubild für kontinuierliche Abkühlung

8.0


Richtanalyse Gew.-%

Härteverfahren

Salzbad


Umwandlungstemperaturen:

 $AC_1 = 830 \,^{\circ}C$, $Ms = 175 \,^{\circ}C$

Die Härtetemperatur des DRM3 beträgt 1.100 – 1.140°C

	Salzbad	Vakuum
Dicke [mm]	Haltzeiten [min]	Haltzeiten [min]
bis 12	8-10	
bis 25	10-15	20-30
bis 36	15-20	pro 25 mm Dicke
bis 50	20-25	
bis 100	30-40	10-20
über 100	30-40	pro 25 mm Dicke

Vakuum

Bitte beachten:

Luftabkühlung ab 500°C bei Salzbadhärtung.

Anlassen umgehend beginnen bei Erreichen von 100°C.

Zu tiefe Abkühlung bei Vakuumhärtung vermeiden, falls scharfe Kanten oder ungünstige Geometrie vorliegen.

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Mn

0,3

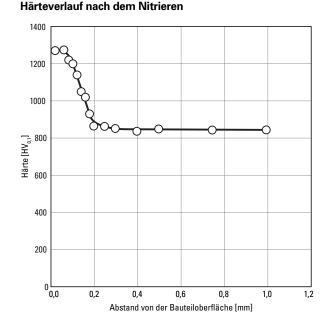
Chemische Zusammensetzung [%]

4.5

W

1,0

Cr Mo


Daido DRM™3

Nitrieren

Beispiel der Mikrostruktur einer nitrierten Oberfläche nach dem PS-Verfahren von Daido Amistar.

Richtanalyse Gew.-%

С

0.8

Si

Angegeben sind stets repräsentative technische Werte auf Grundlage unserer Untersuchungen. Sie stellen, wenn nicht anders angegeben, keine Garantien dar. Bitte lassen Sie sich im Einzelfall beraten.

Die Oberflächenhärte erreicht hier 1.280 HV mit NHD = 0,2 mm.

Spiegelglanzpolierbarer Kunststoffformenstahl, fertig ausscheidungsgehärtet auf 40 HRC. Das Vakuum-Umschmelzverfahren gewährleistet höchste Reinheit dieses Stahls. Er ist mit artgleicher Legierung schweißbar, dabei erzeugt nachfolgendes Warm-Auslagern ein homogenes Gefüge mit gleichmäßiger Härte ohne Wärmeeinflusszone.

Aus NAK80 werden Kunststoffformen großer Querschnitte mit sehr hohen Anforderungen an die Politur hergestellt. Besonders bewährt hat sich NAK80 bei Formen für Scheinwerfer, Stoßfänger, Armaturentafel und allgemein Formen für optisch anspruchsvolle Teile. NAK80 ist geeignet für Duroplaste und Thermoplaste. Faserverstärkte Kunststoffe erfordern meist eine PVD-Beschichtung.

NAK80 ist ein Markenprodukt des japanischen Herstellers Daido Steel. Gebr. Recknagel vertreibt NAK80 als lagerhaltender Alleinvertrieb für Zentraleuropa.

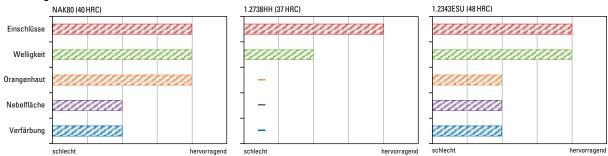
Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Daido NAKTM80

	Chemische Zusammensetzung [%]							
	С	Si	Mn	Cr	Мо	Ni	AI	Cu
Richtanalyse Gew%	0,12	0,3	1,5	0,3	0,3	3,2	1,0	1,0

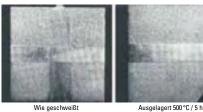
Zeit und Kosten sparen:

Gefüge:



gealtert 500 °C, 5 h

	С	Si	Mn	Cr	Мо	Ni	AI	Cu
Richtanalyse Gew%	0,12	0,3	1,5	0,3	0,3	3,2	1,0	1,0


Hervorragende Polierbarkeit

Spiegelglanz - Politur - Vergleich (nach Poliertest mit Körnung 8000)

Problemlose Schweißbarkeit typische Härteverteilung bei geschweißtem NAK80

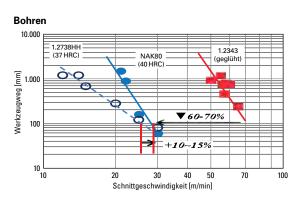
Keine Härteunterschiede nach dem Schweißen, wenn anschließend warmausgelagert wird.

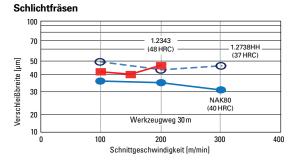
Ausgelagert 500 °C / 5 h nach dem Schweißen

Härte [HV] 300 Schweißen: Temp. Einfluss WIG-Schweißen unter Argon 200 Vorwärmen: 300°C bis 400°C Schweißstrom: 150 A bis 170 A Schweißgut NAK80, werkstoffgleich 4 2

500

Schweißgut Werkstück (gleicher Werkstoff) GEBRÜDER
RECKNAGEL®


Präzision in Stahl



Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

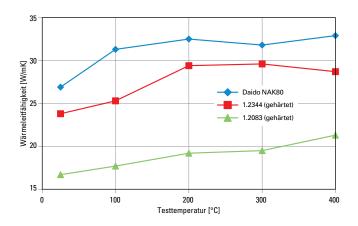
Daido NAKTM80

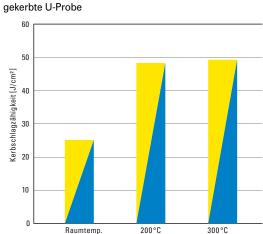
Sehr gute Bearbeitbarkeit

	Chemische Zusammensetzung [%]							
	С	Si	Mn	Cr	Мо	Ni	AI	Cu
Richtanalyse Gew%	0,12	0,3	1,5	0,3	0,3	3,2	1,0	1,0

Schruppfräsen 1.000 1.2738HH : (37 HRC) NAK80 (40 HRC) Verschleißbreite [µm] 100 (geglüht) Werkzeugweg 30 m 10 100 300 400 500 600 Schnittgeschwindigkeit [m/min]

Schnittwertempfehlungen NAK80


Verf	ahren	Werkzeug / Bedingung	Schnittgeschwind.			
Bohren		HSS, unbeschichtet Tiefe: 20 mm Vorschub: 0,15 mm/U, trocken	20-30 m/min			
5	Schrupp	MMC WP-Fräser, Ø 25mm Wendepl. VP15TF(P20-30, beschichtet) ae = 1mm, ap = 4mm Vorschub 0,2mm/z, Luftkühlung trocken	100-300 m/min			
Fräsen	Schlicht	MMC Kugelfräser, Ø 12 mm, 4 Schneiden Wendepl. VP15TF(P20-30, beschichtet) ae = 1 mm, ap = 1 mm Vorschub 0,1 mm/z, Luftkühlung	100-300 m/min			


| Chemische Zusammensetzung [%] | C | Si | Mn | Cr | Mo | Ni | Al | Cu | | Richtanalyse Gew.-% | 0,12 | 0,3 | 1,5 | 0,3 | 0,3 | 3,2 | 1,0 | 1,0 |

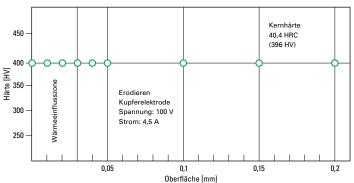
Wärmeleitfähigkeit

NAK80® zeigt durch besonders günstige Legierungslage eine hohe Wärmeleitfähigkeit, kürzere Abkühlzeiten sind die Folge.

Kerbschlagzähigkeit

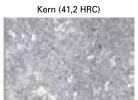
WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de



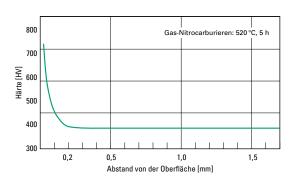
Daido NAKTM80

Erodieren


Einfach feinsterodieren ohne Härtezunahme der erodierten Fläche

Härteverlauf unter der Erodierfläche

Mikrostruktur


Oberfläche (41,8 HRC)

Chemische Zusammensetzung [%]

C Si Mn Cr Mo Ni AI Cu

Nitrieren

Härteabfall oder/und Verzug können auftreten bei jeglicher Behandlung über $520\,^{\circ}\text{C}.$

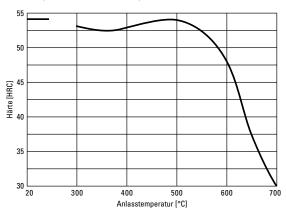
Angegeben sind stets repräsentative technische Werte auf Grundlage unserer Untersuchungen. Sie stellen, wenn nicht anders angegeben, keine Garantien dar. Bitte lassen Sie sich im Einzelfall beraten.

1.2343 ESU

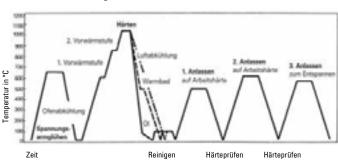
1.2343 X 37 CrMoV 5-1 1.2343ESU X 37 CrMoV 5-1 ESU

Warmarbeitsstahl zur Herstellung von hochbeanspruchten Warmarbeitswerkzeugen, Warmfließpresswerkzeugen, Druckgießwerkzeugen, Warmscherenmessern und Formteilpressgesenken.

Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen, VarioPlan®, VarioRond® und als Rohmaterialzuschnitt.


1.2343 ESU erhalten Sie a	ls VarioPlan [®]	und EcoPlan®
---------------------------	---------------------------	--------------

1.2343 erhalten Sie bei uns auch individuell nach Ihren Angaben als fertig bearbeitetes Zeichnungsteil.


Farbkennzeichnung: Rot/Schwarz

Anlassschaubild

Härtetemperatur: 1020° C, Probequerschnitt: Vkt. 50 mm

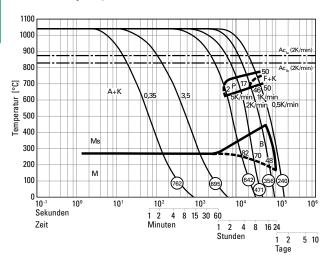
Wärmebehandlungsschema

GEBRÜDER
RECKNAGEL

Präzision in Stahl

Chemische Zusammensetzung [%]

S Cr Mo NI V

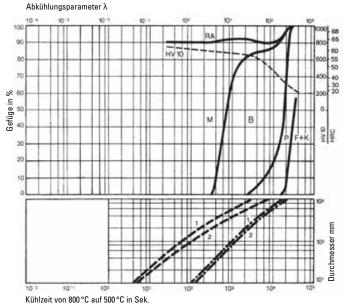

WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

1.2343 X 37 CrMoV 5-1 1.2343ESU X 37 CrMoV 5-1 ESU

ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 1080°C, Haltedauer: 15 Minuten



Härte in HV 2,46 Gefügeanteile in % 0,35 ... 7,5 Abkühlungsparameter, d. h. Abkühlungsdauer von 800–500°C in s x 10⁻² 5 ... 0,5 K/min Abkühlungsgeschwindigkeit im Bereich von 800–500°C

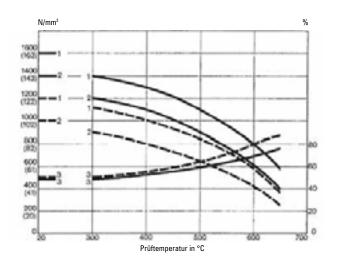
Chemische Zusammensetzung [%]

	С	Si	Mn	P	S	Cr	Мо	NI	V
max.	0,41	1,2	0,50	0,03	0,02	5,5	1,5	0,21	0,5
min.	0,33	0,8	0,25			4,8	1,1		0,3

Gefügemengenschaubild

--- Ölabkühlung--- Luftabkühlung

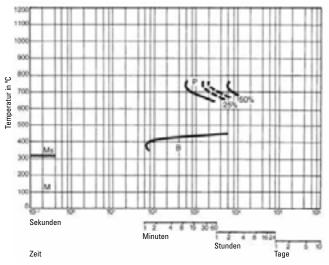
1 Werkstückrand 2 Werkstückzentrum



1.2343 X 37 CrMoV 5-1 1.2343ESU X 37 CrMoV 5-1 ESU

Chemische Zusammensetzung [9										
	С	Si	Mn	P	s	Cr	Мо	NI	V	
max.	0,41	1,2	0,50	0,03	0,02	5,5	1,5	0,21	0,5	
min.	0,33	0,8	0,25			4,8	1,1		0,3	

Warmfestigkeitsschaubild



- --- vergütet 1600 MPa - - - vergütet 1200 MPa
- Zugfestigkeit MPa (kp/mm²) 1
 - 2 0,2-Grenze MPa (kp/mm²)

 - Einschnürung %

Isothermisches ZTU-Schaubild

Austenitisierungstemperatur: 1030 °C, Haltedauer: 15 Minuten

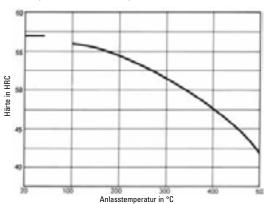
Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

1.2767 45 NiCrMo 16

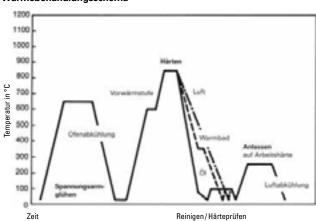
Werkzeugstahl für hochbeanspruchte Massivprägewerkzeuge, Kalteinsenkwerkzeuge, Kaltscherenmesser sowie zur Herstellung von Kunststoffformen.

Diesen Werkstoff erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen), VarioPlan®, VarioRond® und als Rohmaterialzuschnitt.

Chemische Zusammensetzung [%]


	С	Si	Mn	Cr	Мо	NI
max.	0,5	0,4	0,5	1,5	0,35	4,3
min.	0,4	0,1	0,2	1,2	0,15	3,8

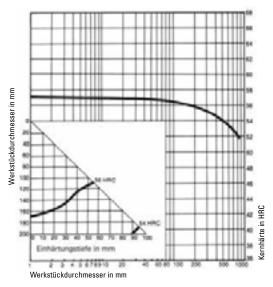
1.2767 erhalten Sie bei uns auch individuell nach Ihren Angaben als fertig bearbeitetes Zeichnungsteil.

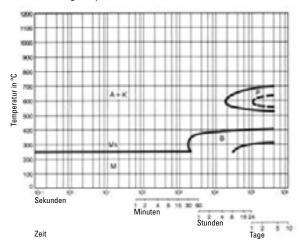

Farbkennzeichnung: Lila

Anlassschaubild

Härtetemperatur: 850°C, Probequerschnitt: Vkt. 20mm

Wärmebehandlungsschema




	enermound Educarimienteeteang [70]										
	С	Si	Mn	Cr	Мо	NI					
max.	0,5	0,4	0,5	1,5	0,35	4,3					
min.	0,4	0,1	0,2	1,2	0,15	3,8					

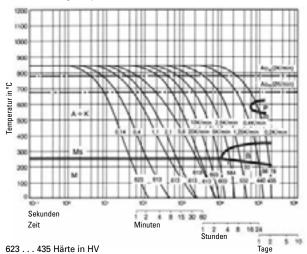
Abhängigkeit der Kernhärte und der Einhärtetiefe vom Werkstückdurchmesser

Isothermisches ZTU-Schaubild

Austenitisierungstemperatur: 840 °C, Haltedauer: 15 Minuten

Härtetemperatur: 960°C Härtemittel:

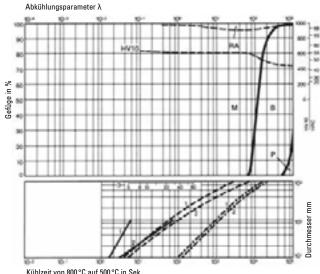
Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de



1.2767 45 NiCrMo 16

Chemische Zusammensetzung [%] Si Mn Cr Mo NI 0,4 0,1 0,2

ZTU-Schaubild für kontinuierliche Abkühlung


Austenitisierungstemperatur: 840°C, Haltedauer: 15 Minuten

1...98 Gefügeanteile in % 0,14 . . . 5,6 Abkühlungsparameter,

d. h. Abkühlungsdauer von 800–500 °C in s x 10^{-2} 20 . . . 0,2K/mins Abkühlungsgeschwindigkeit in K/min im Bereich von 800–500°C B......Bainit

Gefügemengenschaubild

Kühlzeit von 800°C auf 500°C in Sek.

- Wasserkühlung
- --- Ölabkühlung
- • Luftabkühlung
- Werkstückrand
- 2 3 Werkstückzentrum
 - Jominy Probe:
- Abstand von der Stirnfläche

Zugfestigkeit [n/mm²] (Richtwerte)

2200

2000

1800

1600

1400

1200

1000

700

Anlassschaubild

55

50

[HRC]

Härte 40

35

30

Kunststoffformenstahl für mittlere und große Formen. Da dieser Werkstoff im Lieferzustand vorvergütet auf 950-1.100 MPa ist, eignet er sich gleichfalls für Teile des allgemeinen Maschinenbaus.

Im Vergleich ist 1.2312 durch den Gehalt an Schwefel leichter zerspanbar, aber nicht polierbar. 1.2311 ist polier- und fotoätzbar. Beide Werkstoffe sind gasund badnitrierbar und eignen sich zur Einsatzhärtung.

1.2311 erhalten Sie bei uns als Präzisionsflachstahl (Standard- und Sonderabmessungen), als VarioPlan® und als Rohmaterialzuschnitt.

300

400

ratur [°C]

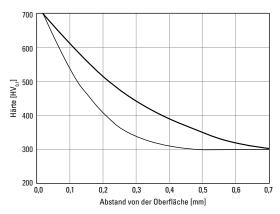
500

600

Härtetemperatur: 850°C, Probequerschnitt: Vkt. 50 mm

1.2312 erhalten Sie bei uns als Präzisionsflachstahl Sonderabmessung, als VarioRond® und als Rohmaterialzuschnitt.

Beide Werkstoffe erhalten Sie bei uns auch individuell nach Ihren Angaben als fertig bearbeitete Zeichnungsteile.


Farbkennzeichnung: 1.2311: Gelb

1.2312: Orange/Lila

Oberflächenbehandlung Nitrieren

Härteverlauf in der Nitrierschicht

- Gasnitrierung im Ammoniakstrom 50 Stunden bei 520°C
- Badnitrierung (Teniferverfahren) 2 Stunden bei 570°C

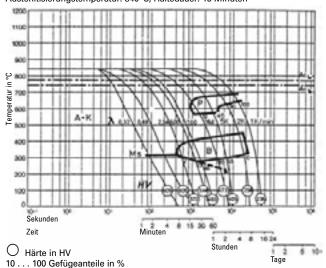
100

www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Gefügemengenschaubild

Abkühlungsparameter λ



1.2312 40 CrMnMoS 8-7

Chemische Zusammensetzung [%] s Cr Mo Ni Cu 0.10 0,05 1,8 0,15

ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 840°C, Haltedauer: 15 Minuten

0,32 . . . 18,6 Abkühlungsparameter,

d. h. Abkühlungsdauer von $800-500\,^{\circ}$ C in s x 10^{-2} 5 . . . 1K/mins Abkühlungsgeschwindigkeit in K/min im Bereich von 800-500°C

B.....Bainit

Wasserkühlung --- Ölabkühlung

Kühlzeit von 800 °C auf 500 °C in Sek.

- • - Luftabkühlung

Werkstückrand

3

Werkstückzentrum Jominy Probe: Abstand von der Stirnfläche

Durchmesser

MINKOR®

Korrosionsbeständiger Werkzeugstahl und leichte Bearbeitung waren bislang oft unvereinbare Gegensätze. Mit MINKOR® ist das Bohren merklich einfacher, mit höheren Standzeiten des Werkzeuges und zuverlässigeren Prozessen.

Tiefe Kühlbohrungen und aufwändige Fräsarbeiten sind nun um fast ein Drittel schneller machbar.

Bei der Verwendung korrosiver Kunststoffe ist die Auswahl eines beständigen Formenbaustahls ausschlaggebend für die Lebensdauer der Form.

MINKOR® - Eigenschaften, technische Daten und Verarbeitung:

- durchvergütet auf 280-325 HBW
- gut schweißbar (vorwärmen auf 100°C)
- korrosionsbeständig (vergleichbar mit 1.2085/1.2316)
- · maßbeständig
- deutlich zäher als andere (Kerbschlagarbeit ISO V-Probe: MINKOR®: 10-12 Joule; 1.2085/1.2316: 4-6 Joule)
- sehr gut bohrbar auch bei Kühlbohrungen

Wärmeleitkoeffizient

+20°C	21,6 W/mK
+50°C	23,2 W/mK
+350°C	24,9 W/mK

Wärmeausdehnungskoeffizient [10⁻⁶/K]

20-100°C	20-200°C	20−300°C	20-400°C	20-500°C
10,0	10,6	11,0	11,3	11,6

Spez.Wärme: 460 J/kgK

GEBRÜDER
RECKNAGEL

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

MINKOR®

Chemische	Zusammensetzung	[%]
CHEITHSCHE	Lusaiiiiileiisetzuiig	[/0]

									_
	С	Si	Mn	s	Cr	Ni	Мо	Ν]
max.	0,09	0,40	1,70	0,15	13,5	1,00	0,15	0,05	1
min.		0,15	0,90	0,10	11,5	0,25	0,05		1

Tieflochbohren ø 12mm	MINKOR	1.2316	1.2085
Schnittgeschwindigkeit (m/min)	49	45	45
Vorschub (mm/min)	35	20	25
Standzeit (min)	650	400	650
Zeitspanvolumen (cm³/min)	13,19	7,50	9,42

• sehr gut fräsbar mit hohem Vorschub

$\label{eq:minkor} \textbf{MINKOR}^{\tiny{\texttt{\tiny 0}}}\text{- einfach schneller fertig}$

Lagerdicken (Rohmaterial)

Dicken für Formate 500 x 1.000 mm oder 1.020 x 2.000 mm

15 mm	18 mm	20 mm	25 mm	28 mm	30 mm	35 mm	40 mm
45 mm	50 mm	60 mm	65 mm	70 mm	80 mm	90 mm	100 mm
120 mm	140 mm	170 mm	205 mm	225 mm	255 mm	305 mm	

1.4112 X 90 CrMoV 18

Korrosionsbeständiger martensitischer Werkzeugstahl mit hoher Verschleißbeständigkeit, magnetisch, polierbar und gut bearbeitbar zur Herstellung von Messern, Schneidwaren, chirurgischen Instrumenten, Kugellagern, Spritzdüsen und Messerscheiben.

1.4112 erhalten Sie bei uns als PräziPlan-Sonderabmessung sowie als Zeichnungsteil oder Führungsleiste.

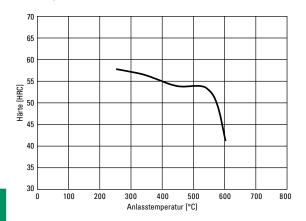
GEBRÜDER RECKNAGEL

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

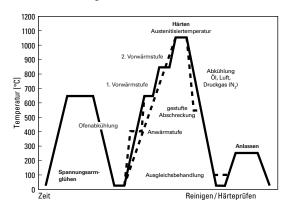
1.4112 X 90 CrMoV 18

Chemische Zusammensetzung [%] Мо

Wärmebehandlung


Weichglühen: 780-840°C, Ofenabkühlung, Glühhärte max. 265 HB

Spannungsarmglühen: 600–650°C, Ofenabkühlung


Härten: 1.000–1.050°C, Abkühlung Öl, Druckgas, Luft, Warmbad 500–550°C

Anlassschaubild

Härtetemperatur: 1.020 °C

Wärmebehandlungsschema

1.3343 HS 6-5-2 C

AISI M2

Schnellarbeitsstahl (HSS) mit guter Zähigkeit, hoher Warmfestigkeit und hoher Verschleißfestigkeit zur Herstellung von Zerspanungswerkzeugen, Schneid- und Feinschneidstempeln, Kaltfließpressstempeln und Matrizen, gut geeignet zur Beschichtung mit PVD- und CVD-Verfahren.

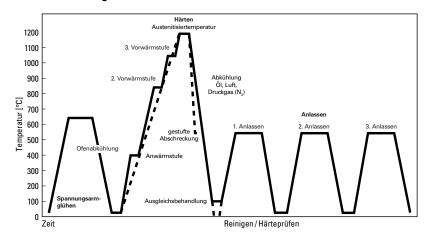
1.3343 erhalten Sie bei uns als VarioPlan sowie als PräziPlan-Sonderabmessung.

Chemische Zusammensetzung [%]

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

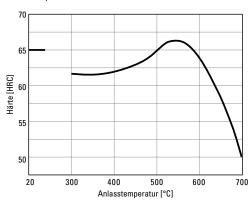
1.3343 HS 6-5-2 C

Wärmebehandlung


Weichglühen: 790–820°C, Ofenabkühlung, Glühhärte max. 269 HB

Spannungsarmglühen: 600-650°C, Ofenabkühlung

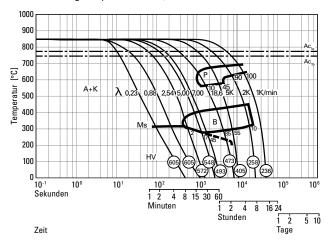
Härten: $1.180-1.230\,^{\circ}$ C, Abkühlung Öl, Druckgas, Luft, Warmbad $500-550\,^{\circ}$ C


max. 0,94 0,45 0,4 0,03 0,03 4,5 5,2 2,1 6,7 min. 0.86 3.8 4.7 1,7 5.9		С	Si	Mn	P	s	Cr	Мо	V	W
min. 0.86 3.8 4.7 1.7 5.9	max.	0,94	0,45	0,4	0,03	0,03	4,5	5,2		6,7
	min.	0,86					3,8	4,7	1,7	5,9

Wärmebehandlungsschema

Anlassschaubild

Härtetemperatur: 1.210° C



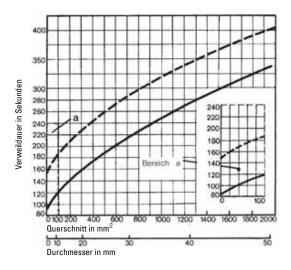
	С	Si	Mn	P	s	Cr	Мо	V	W
max.	0,94	0,45	0,4	0,03	0,03	4,5	5,2	2,1	6,7
min.	0,86					3,8	4,7	1,7	5,9

ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 840°C, Haltedauer: 15 Minuten

Härte in HV

2...100 Gefügeanteile in %


0,23...18,6 Abkühlungsparameter,

d. h. Abkühlungsdauer von 800–500°C in s x 10⁻²

5...1 K/min Abkühlungsgeschwindigkeit im Bereich von 800–500°C

B.......Bainit

Verweildauer-Diagramm

Austenitisierungsdauer:

- 80 Sekunden

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

- - - 150 Sekunden

Vorwärmung bei 550°C, 850°C und 1.050°C

Härtevergleichstabelle

Zug- festigkeit	Vickers- härte	Kugel- eindruck	Brinell- härte	Rockw	ellhärte	Zug- festigkeit	Vickers- härte	Kugel- eindruck	Brinell- härte	Rockw	ellhärte
MPa	HV	mm	НВ	HRB	HRC	MPa	HV	mm	НВ	HRB	HRC
200	63	7,32	60			690	215	4,22	204	94	
210	65	7,22	62			700	219	4,19	208		
220	69	7.04	66			705	220	4,18	209	95	
230	72	6,95	68 71			710	222	4,16	211	95,5	
240 250	75 79	6,82	75			720 730	225 228	4,13	214 216	96	
250 255	80	6,67 6,63	76			740	228	4,11 4,08	219	96,5	
260	82	6,56	78			750	233	4,07	221	97	
270	85	6,45	81	41		755	235	4,05	223	3,	
280	88	6,35	84	45		760	237	4,03	225	97,5	
285	90	6,28	86	48		770	240	4,01	228	98	
290	91	6,25	87	49		780	243	3,98	231		21
300	94	6,19	89	51		785	245	3,97	233		
305	95	6,16	90	52		790	247	3,95	235	99	
310 320	97 100	6,1	92	54		800	250	3,93	238 240	99,5	22
320	100	6,01 5,93	95 98	56 58		810 820	253 255	3,91 3,89	240		23
335	105	5,93	100	59		830	258	3,87	242		23
340	105	5,83	100	60		835	260	3,85	245	1	24
350	110	5,75	105	62		840	262	3,84	249		
360	113	5,7	107	63,5		850	265	3,82	252		
370	115	5,66	109	64,5		860	268	3,8	255		25
380	119	5,57	113	66		865	270	3,78	257		
385	120	5,54	114	67		870	272	3,77	258		26
390	122	5,5	116	67,5		880	275	3,76	261		
400	125	5,44	119	69		890	278	3,74	264		27
410 415	128 130	5,38 5,33	122 124	70 71		900 910	280 283	3,72 3,7	266 269		21
420	132	5,32	125	72		915	285	3,69	271		
430	135	5,26	128	73		920	287	3,68	273		28
440	138	5,2	131	74		930	290	3,66	276		
450	140	5,17	133	75		940	293	3,64	278		29
460	143	5.11	136	76,5		950	295	3,63	280		
465	145	5,08	138	77		960	299	3,61	284		
470	147	5,05	140	77,5		965	300	3,6 3,59	285		
480	150	5,00	143	78,5		970	302	3,59	287		30
490 495	153 155	4,96 4,93	145 147	79,5 80		980 990	305 308	3,57 3,55	290 293		
500	155		147	81		995	310	3,55	295		31
510	160	4,9 4,86	152	81,5		1000	310	3,54	295		31
520	163	4,81	155	82,5		1010	314	3,52	299		
530	165	4,78	157	83		1020	317	3,50	301		32
540	168	4,74	160	84,5		1030	320	3,49	304		
545	170	4,71	162	85		1040	323	3,47	307		
550	172	4,7 4,66	163	85,5		1050	327	3,45	311		33
560	175	4,66	166	86		1060	330	3,44	314	1	
570 575	178	4,62	169	86,5 87		1070	333	3,43	316 319		34
5/5 580	180 181	4,59 4,58	171 172	8/		1080 1090	336 339	3,41 3,4	319		34
590	184	4,56	175	88		1090	340	3,39	323		
595	185	4,53	176	00		1100	342	3,38	325	1	
600	187	4,51	178	89		1110	345	3,36	328		35
610	190	4,47	181	89,5		1120	349	3,35	332		
620	193	4.44	184	90		1125	350	3,34	333		
625	195	4,43	185			1130	352	3,33	334		
630	197	4,4	187	91		1140	355	3,32	337		36
640	200	4,37	190	91,5		1150	358	3,31	340		
650	203	4,34	193	92		1155	360	3,3	342	1	
660 670	205	4,32	195 198	92,5 93		1160	361 364	3,29	343 346		37
670 675	208 210	4,29 4,27	198	93,5		1170 1180	364 367	3,28 3,26	346		3/
680	210	4,27	201	93,5		1190	367	3,25	352		
000	212	4,20	201			1190	3/0	3,25	352	L	

Zug- festigkeit	Vickers- härte	Kugel- eindruck	Brinell- härte	Rockw	ellhärte	Zug- festigkeit	Vickers- härte	Kugel- eindruck	Brinell- härte	Rockwe	ellhärte
MPa	HV	mm	HB	HRB	HRC	MPa	HV	mm	HB	HRB	HRC
1200	373	3,24	354		38	1750	533	2,72	506		
1210	376	3.23	357			1760	536	2,71	509		
1220	380	3,21	361			1770	539 540		512		
1230	382	3,2	363		39	1775	540	2,70	513		
1240 1250	385 388	3,19 3,18	366 369			1780 1790	541 544	2,69	514 517		52
1255	390	3,10	371			1800	544	2,09	520		52
1260	392	0,17	372		40	1810	550	2,68	523		
1270	394	3,16	374			1820	553	2,67	525		
1280	397	3,14	377			1830	556		528		
1290	400	3,13	380			1840	559	2,66	531		
1300	403	3,12	383		41	1845	560		532		53
1310 1320	407 410	3,10 3,09	387 390			1850 1860	561 564	2,65	533 536		
1330	413	3,08	393		42	1870	567	2,64	539		
1340	417	3,07	396		72	1880	570	2,04	542		
1350	420	3,06	399			1890	572	2,63	543		
1360	423	3,05	402		43	1900	575	2,62	546		
1370	426	3,04	405			1910	578		549		54
1380	429		408			1920	580	2,61	551		
1385	430	3,02	409			1930	583	2,60	554		
1390 1400	431 434	3,01	410 413		44	1940 1950	586 589	2,59	557 560		
1410	434	3,00	415		44	1955	590	2,59	561		
1410	440	2,99	418			1960	590		562		
1430	443	2,98	421			1970	594	2,58	564		
1440	446	2,97	424		45	1980	596	_,_,	567		55
1450	449	2,96	427			1990	599	2,57	569		
1455	450		428			1995	600		570		
1460	452	2,95	429			2000	602	2,56	572		
1470	455	2,94	432			2010	605		575		
1480 1485	458 460	2,93	435 437		46	2020 2030	607 610	2,55	577 580		
1490	461	2,92	438			2040	613	2,54	582		
1500	464	2,91	441			2050	615	2,04	584		56
1510	467	2,9	444			2060	618	2,53	587		
1520	470	2,89	447			2070	620		589		
1530	473		449		47	2080	623	2,52	592		
1540	476	2,88	452			2090	626		595		
1550 1555	479 480	2,87	455 456			2100 2105	629 630	2,51	598 599		
1560	480 481	2,86	455			2105	631		600		
1570	484	2,85	460		48	2120	634	2,50	602		
1580	486		462			2130	636		604		
1590	489	2,84	465			2140	639	2,49	607		57
1595	490	2,83	466			2145	640		608		
1600	491	0.00	467			2150	641	0.40	609	1	
1610 1620	494 497	2,82	470 472		49	2160 2170	644 647	2,48	612 615		
1630	500		472		49	2170	650	2,41	618		
1640	503	2.80	478			2190	653		620		
1650	506	2,79	481			2200	655	2,46	622	1	58
1660	509		483				675				59
1665	510	2,78	485				698				60
1670	511		486				720				61
1680	514	2,77	488		50		745				62
1690 1700	517 520	2,76	491 494				773 800				63 64
1710	520	2,75	494				829				65
1720	525	2,74	499				864				66
1730	527	_,,,,	501		51		900				67
1740	530	2,73	504		1 1		940				68

TOOLOX® 44

Härtevergleichstabelle für Toolox®und Hardox®

Zugfestigkeit MPa	715	790	820	861	935	995	1011	1090	1169	1245	1328	1412	1494	1580	1758	1940	2130
Vickershärte HV	205	233	243	261	289	311	317	345	373	401	429	458	485	514	569	627	682
Brinellhärte HBW	225	250	260	275	300	320	325	350	375	400	425	450	475	500	550	600	650
Rockwell HRC	19	22,5	24	26	29	32	32,5	35,5	38	40	42,5	44,5	46,5	49	52,5	55	57,5

Gewichtstabelle

Länge: 500 mm Kilogramm [Stück]

											Dicke	[mm]									
		1	1,5	2	3	4	5	6	8	10	12	15	16	18	20	25	30	32	40	50	60
	10	0,04	0,06	0,08	0,12	0,16	0,20	0,24	0,32	0,40											
	12	0,05	0,08	0,10	0,15	0,19	0,24	0,29	0,38	0,48	0,57										
	15	0,06	0,09	0,12	0,18	0,24	0,30	0,36	0,48	0,59	0,71	0,89									
	20	0,08	0,12	0,16	0,24	0,32	0,40	0,48	0,63	0,79	0,95	1,18	1,26	1,42	1,57						
	25	0,10	0,15	0,20	0,30	0,40	0,50	0,59	0,79	0,99	1,18	1,48	1,57	1,77	1,97	2,46					
	30	0,12	0,18	0,24	0,36	0,48	0,59	0,71	0,95	1,18	1,42	1,77	1,89	2,12	2,36	2,95	3,54				
	35	0,14	0,21	0,28	0,42	0,55	0,69	0,83	1,10	1,38	1,65	2,07	2,20	2,48	2,75	3,44	4,13	4,40			
	40	0,16	0,24	0,32	0,48	0,63	0,79	0,95	1,26	1,57	1,89	2,36	2,52	2,83	3,14	3,93	4,71	5,03	6,28		
ļ	50	0,20	0,30	0,40	0,59	0,79	0,99	1,18	1,57	1,97	2,36	2,95	3,14	3,54	3,93	4,91	5,89	6,28	7,85	9,82	
-	60	0,24	0,36	0,48	0,71	0,95	1,18	1,42	1,89	2,36	2,83	3,54	3,77	4,24	4,71	5,89	7,07	7,54	9,42	11,78	14,13
[mm]	70	0,28	0,42	0,55	0,83	1,10	1,38	1,65	2,20	2,75	3,30	4,13	4,40	4,95	5,50	6,87	8,25	8,80	10,99	13,74	16,49
	75	0,30	0,45	0,59	0,89	1,18	1,48	1,77	2,36	2,95	3,54	4,42	4,71	5,30	5,89	7,36	8,84	9,42	11,78	14,72	17,67
Breite	80	0,32	0,48	0,63	0,95	1,26	1,57	1,89	2,52	3,14	3,77	4,71	5,03	5,66	6,28	7,85	9,42	10,05	12,56	15,70	18,84
Bre	90	0,36	0,53	0,71	1,06	1,42	1,77	2,12	2,83	3,54	4,24	5,30	5,66	6,36	7,07	8,84	10,60	11,31	14,13	17,67	21,20
	100	0,40	0,59	0,79	1,18	1,57	1,97	2,36	3,14	3,93	4,71	5,89	6,28	7,07	7,85	9,82	11,78	12,56	15,70	19,63	23,55
	120	0,48	0,71	0,95	1,42	1,89	2,36	2,83	3,77	4,71	5,66	7,07	7,54	8,48	9,42	11,78	14,13	15,08	18,84	23,55	28,26
	125	0,50	0,74	0,99	1,48	1,97	2,46	2,95	3,93	4,91	5,89	7,36	7,85	8,84	9,82	12,27	14,72	15,70	19,63	24,54	29,44
	150	0,59	0,89	1,18	1,77	2,36	2,95	3,54	4,71	5,89	7,07	8,84	9,42	10,60	11,78	14,72	17,67	18,84	23,55	29,44	35,33
	160	0,63	0,95	1,26	1,89	2,52	3,14	3,77	5,03	6,28	7,54	9,42	10,05	11,31	12,56	15,70	18,84	20,10	25,12	31,40	37,68
	175	0,69	1,04	1,38	2,07	2,75	3,44	4,13	5,50	6,87	8,25	10,31	10,99	12,37	13,74	17,18	20,61	21,98	27,48	34,35	41,22
	180	0,71	1,06	1,42	2,12	2,83	3,54	4,24	5,66	7,07	8,48	10,60	11,31	12,72	14,13	17,67	21,20	22,61	28,26	35,33	42,39
	200	0,79	1,18	1,57	2,36	3,14	3,93	4,71	6,28	7,85	9,42	11,78	12,56	14,13	15,70	19,63	23,55	25,12	31,40	39,25	47,10
	250	0,99	1,48	1,97	2,95	3,93	4,91	5,89	7,85	9,82	11,78	14,72	15,70	17,67	19,63	24,54	29,44	31,40	39,25	49,07	58,88
oxdot	300	1,18	1,77	2,36	3,54	4,71	5,89	7,07	9,42	11,78	14,13	17,67	18,84	21,20	23,55	29,44	35,33	37,68	47,10	58,88	70,65

Vierkant,	Lange: 50	00 mm								Kilogramm [Stüc										
	3	4	5	6	8	10	12	15	16	18	20	25	30	32	35	40	45	50	60	
	0,04	0,07	0,10	0,15	0,26	0,40	0,57	0,89	10,10	1,28	1,57	2,46	3,54	4,02	4,81	6,28	7,95	9,82	14,13	

WebShop: www.stahlnetz.de

Telefon: +49(0)36844/480-0 • Telefax: +49(0)36844/480-55 • grp@stahlnetz.de

Gewichtstabelle

Gewichtstabelle

Länge: 1.000 mm
Kilogramm [Stück]

Dicke [mm] 5 6 8 10 12 15 16 18 20 25 30 32 40 50 60 63 80 100 10 0.32 0.40 0.48 0.63 0.79 12 0,38 0,48 0,57 0,76 0,95 1,14 15 0,48 0,59 0,71 0,95 1,18 1,42 1,77 16 0,51 0,63 0,76 1,01 1,26 1,51 1,89 2,01 20 0,63 0,79 0,95 1,26 1,57 1,89 2,36 2,52 2,83 3,14 25 0,79 2,36 2,95 0,99 1,18 1,57 1,97 3,14 3,54 3,93 4,91 30 0,95 1,18 1,42 1,89 2,36 2,83 3,54 3,77 4,24 4,71 5,89 7,07 32 1,26 4,02 8.04 1,01 1,51 2.01 2.52 3.02 3,77 4,53 5.03 6,28 7,54 35 1,10 1,38 1,65 2,20 2,75 3,30 4,13 4,40 4,95 6,87 8,25 8,80 5,50 40 1,89 2,52 4,71 5,03 5,66 6,28 7,85 10,05 12,56 1.26 1.57 3.14 3.77 9.42 45 1.42 1.77 2.12 2 83 3 54 4.24 5.30 5.66 6.36 7.07 8.84 10.60 11.31 14 13 50 1,57 1,97 2,36 3,14 3,93 4,71 5,89 6,28 7,07 7,85 9,82 11,78 12,56 15,70 19,63 28 26 60 1,89 2.36 2.83 3.77 4,71 5 66 7.07 7.54 8.48 9.42 11.78 14.13 15.08 18.84 23.55 70 2,20 3,30 8,25 27,48 2,75 4,40 5,50 6,60 8,80 9,90 10,99 13,74 16,49 17,59 21,98 32,97 34,62 50.24 39.57 80 2.52 3.14 3.77 5.03 6.28 7.54 9.42 10.05 11.31 12.56 15.70 18.84 20.10 25.12 31.40 37.68 90 2,83 3,54 4,24 7,07 8,48 10,60 12,72 21,20 22,61 35,33 42,39 44,51 56,52 5,66 11,31 14,13 17,67 28,26 78,50 7.85 100 3.14 3.93 4.71 6.28 9.42 11.78 12.56 14.13 15.70 19.63 23.55 25.12 31.40 39.25 47.10 49.46 62.80 120 3,77 4,71 5,66 7,54 9,42 11,31 14,13 15,08 16,96 18,84 23,55 28,26 30,15 37,68 47,10 56,52 59,35 75,36 94,20 98,13 125 3.93 4.91 5.89 7.85 9.82 11.78 14.72 15.70 17.67 19.63 24.54 29,44 31,40 39.25 49.07 58.88 61.82 78.50 150 4,71 5.89 7,07 9.42 11,78 14,13 17,67 18.84 21,20 23.55 29,44 35.33 37,68 47,10 58.88 70,65 74.19 94,20 117,75 160 5,03 6,28 7,54 10,05 12,56 15,08 18,84 20,10 22,61 25,12 31,40 37,68 40,20 50,24 62,80 75,36 79,13 100,48 125,60 180 5,66 7,07 8,48 11,31 14,13 16,96 21,20 22,61 25,44 28,26 35,33 42.39 45,22 56.52 70,65 84,78 89,02 113,04 141,30 200 6,28 7,85 9,42 12,56 15,70 18,84 23,55 25,12 28,26 31,40 39,25 47,10 50,24 62,80 78,50 94,20 98,91 125,60 157,00 250 9,82 11,78 23.55 35.33 39,25 49,07 98,13 117,75 123.64 157,00 196.25 7,85 15,70 19,63 29,44 31,40 58.88 62,80 78.50 9,42 300 11,78 23,55 28,26 37,68 42,39 47,10 58,88 70,65 94,20 117,75 141,30 148,37 188,40 235,50 14,13 18,84 35,33 75,36 125,60 400 12.56 15.70 18.84 25,12 31,40 37,68 47,10 50.24 56.52 62.80 78.50 94.20 100.48 157.00 188.40 197,82 251.20 314.00 500 15,70 19,63 23,55 31,40 39,25 47,10 58,88 62,80 70,65 78,50 98,13 117,75 125,60 157,00 196,25 235,50 247.28 314,00 392,50

Vierkant, Länge: 1.000 mm															Kilogramm [Stück]					
		8	10	12	15	16	18	20	25	30	32	35	40	45	50	60	63	80	100	
		0,51	0,79	1,14	1,77	2,01	2,55	3,14	4,91	7,07	8,04	9,62	12,56	15,90	19,63	28,26	31,16	50,24	78,50	

WebShop:

ALLGEMEINE GESCHÄFTSBEDINGUNGEN

für Bestellungen bei den Firmen Gebrüder Recknagel Präzisionsstahl GmbH, Christes und Recknagel Präzisionsstahl GmbH, Hückeswagen, Stand 1. Oktober 2019

Vorbemerkung

Unsere Arbeit soll dem Wohlstand, der Freiheit und dem Frieden der Menschen dienen. Die leidvollen Erfahrungen der Gründergeneration unserer Firma in Zeiten des Krieges und der Unfreiheit verpflichten uns zu diesen Zielen. Wir respektieren in jeder Hinsicht das Feld Ihrer wirtschaftlichen Tätigkeit, bitten aber für unser Unternehmen von Aufträgen abzusehen, die der Herstellung von Kriegswaffen dienen.

A. ALLGEMEINES / GELTUNGSBEREICH

[...]

ΔGB

www.stahlnetz.de

B. TECHNISCHER TEIL

B 1. Toleranzen und Bearbeitung (z.B. Feingeschliffen, Gefräst o.ä.)

Präzisionsflachstähle werden stets mit den im Katalog angegebenen Toleranzen und Ausführungen gefertigt. Sonderanfertigungen aus im Katalog /WebShop genannten Werkstoffen werden in Breite und Dicke mit den im Katalog/WebShop für den Werkstoff genannten Toleranzen und Bearbeitungen und in der Länge mit Allgemeintoleranzen nach DIN 2768-mittel gefertigt, sofern keine andere Ausführung vereinbart wird.

Für Sonderabmessungen aus anderen Werkstoffen und andere Produkte sind die Toleranzen und Ausführungen zu vereinbaren. Wird keine spezielle Vereinbarung getroffen, wird das Erzeugnis entsprechend des Standardproduktes gefertigt, mit dem es die größte Übereinstimmung aufweist.

B 2. Gehärtete Führungsleisten

Wie in der DIN 69 056-1:1992-01 für Führungsleisten berücksichtigt, erfahren gehärtete Leisten bei der Wärmebehandlung eine Volumenänderung von ca. +/- 1 ‰. Zur Positionstoleranz von Bohrungen beachten Sie bitte Punkt B4. Nuten, die nach der Wärmebehandlung nicht mehr bearbeitet werden, können ggf. abweichend von der Zeichnungsvorschrift nach DIN 69 056 (siehe unter "Erläuterungen") mit vergrößertem Maß ausgeführt werden.

B 3. Nitrierte Leisten

Nitrieren ist eine sehr verzugsarme Möglichkeit, verschleißfeste Oberflächen zu erzeugen. Nitrierte Flächen bringen aber zwangsläufig gewisse Druckspannungen in der Oberfläche mit sich. Es ist daher damit zu rechnen, dass insbesondere für dünne Werkstücke eine Volumenänderung von ca. 1 ‰ auftritt. Zur Positionstoleranz von Bohrungen beachten Sie bitte Punkt B4.

B 4. Positionstoleranz

Die Positionstoleranz der Bohrungsabstände (auch für Passbohrungen) richtet sich daher ggf. abweichend von der Zeichnungsvorschrift nach DIN 69 056-1:1992-01 für Führungsleisten. Durchgangslöcher und Senkungen können ggf. abweichend von der Zeichnungsvorschrift nach DIN 69 056 mit vergrößerten Durchmessern ausgeführt werden.

B 5. Kennzeichnung

Alle Produkte werden eindeutig gekennzeichnet mit der Werkstoffnummer und Farbkennzeichnung, ggf. auch mit der Abmessung und weiteren Daten. Die Farbkennzeichnung erfolgt entsprechend der im Katalog/WebShop verwendeten Farben.

B 6. Verpackung

Alle Präzisionsflachstähle werden einzeln korrosionsschützend verpackt. Größere, eigens angefertigte Mengen können in Verpackungseinheiten zusammengefasst werden. Als Transportverpackung wählen wir stets eine geeignete Möglichkeit. In der Regel werden kleinere Lieferungen in stabilen Kartons, größere Lieferungen in Holzkisten oder auf Paletten verpackt. Unbeschädigte Transportverpackungen werden bei freier Anlieferung zurückgenommen.

www.stahlnetz.de

C. KAUFMÄNNISCHER TEIL

[...]

C 12. Haftungsbegrenzung bei Lohnarbeiten

Bei Aufträgen zur Lohnbearbeitung beigestellter Produkte haftet der Auftraggeber dafür, dass sich die beigestellten Produkte für die vorgesehene Lohnbearbeitung eignen. Der Auftraggeber ist zu einer entsprechenden Warenausgangsprüfung vor Anlieferung seiner Produkte verpflichtet. Der Auftraggeber ist verpflichtet, rechtzeitig lesbare und verständliche Begleitdokumente zur Verfügung zu stellen. Für Fehler oder Mängel, die aus für die vorgesehene Bearbeitung ungeeigneten Werkstücken oder aus fehlenden, fehlerhaften oder undeutlichen Begleitdokumenten folgen, haften wir nicht.

Führt eine von uns durchgeführte Lohnarbeit nicht zum vereinbarten Ergebnis, haben wir die Wahl, ob wir auf unsere Berechnung der Lohnarbeit ganz oder teilweise verzichten oder ob wir die Lohnarbeit erneut durchführen, ggf. an einem Ersatzbauteil. Für am Bauteil entstandene Schäden haften wir höchstens in Höhe des Wertes unserer an diesem Bauteil erbrachten Lohnarbeit. Für Folgeschäden oder Verzugsschäden haften wir nicht. Stellt sich eine vereinbarte Lohnarbeit als nicht oder nicht wie vereinbart durchführbar heraus, haben wir das Recht, die weitere Lohnbearbeitung oder Ersatzlohnbearbeitung abzulehnen, ohne dass wir zum Ersatz eines eventuell entstandenen Schadens verpflichtet wären, gleich aus welchem Grund, es sei denn, eine gesetzliche Regelung verbietet den Haftungsausschluss unabdingbar.

[...]

IMPRESSUM

5. Auflage 2019

Stahllexikon

Gebrüder Recknagel Präzisionsstahl GmbH

Metzelser Straße 21–25 98547 Christes/Thüringen

Tel.: +49 (0) 3 68 44/4 80-0 Fax: +49 (0) 3 68 44/4 80-55

grp@stahlnetz.de

Geschäftsführer: Lutz und Peter Recknagel, HRB-Nr. 301583, Amtsgericht Jena,

USt-ldNr.: DE 150 928 119

Recknagel Präzisionsstahl GmbH

Stahlschmidtsbrücke 14 42499 Hückeswagen/Rheinland

Tel.: +49 (0) 21 92/855-0 Fax: +49 (0) 21 92/855-50 rps@stahlnetz.de

Geschäftsführer: Lutz und Peter Recknagel, HRB-Nr. 37616, Amtsgericht Köln,

USt-IdNr.: DE 123 238 137